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We investigate convergence in a weighted L. -norm of Hermite-Fejér and
Hermite interpolation and related approximation processes, when the interpolation
points are zeros of orthogonal polynomials associated with weights W2 =¢"2¢ on
the real line. For example, if H,(W? f, x) denotes the nth Hermite-Fejér
interpolation polynomial for W?=¢ 22 and the function £, then we show that

lim {sup [H(W? £, x) = f(x)] WX (x)[1+ Q)T +1x) "1} =0,

TP xeR

under suitable conditions on f, W2 and k. The weights to which the results
are applicable include W2(x)=-exp(—|x|*), a>1, or W3(x)=exp(—exp.(|x]*),
a>1, k=1, where exp, denotes the kth iterated exponential. Convergence of
product integration rules induced by the various approximation processes is then
deduced. Essentially the conclusion of the paper is that by damping the error in
approximation of f by Hermite~-Fejér or Hcermite interpolation by a factor
[1+]Q(x)|17*(1 +|x]) !, which decays much more slowly than the weight W?,
we can ensure sup-norm convergence under quite general conditions. © 1992

Academic Press, Inc.

1. INTRODUCTION

Let W:=e~%2, where O: R — R is even, continuous, and of at least poly-
nomial growth at infinity. Let %, denote the set of real polynomials of

degree <n. Form the nth orthonormal polynomial for W?,
pn(x) :=pn(W2;x) :=Ynxn+ 6%, '))n='))n(W2)>O,

n=1,2 3, .., satisfying

|7 2u) px) W2(0) d =6,
284
0021-9045/92 $5.00

Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.



HERMITE AND HERMITE-FEJER INTERPOLATION 285

Let us order the zeros x;, =x,,(W?) of p,(x) so that

—W0 <X, <X < e <Xy, < 00, (1.3)

n—1,n

We omit the W? from x,, or p,(x) (and so on) unless confusion can arise.

In this paper, we study the convergence in a weighted L norm of
Hermite—Fejér and Hermite interpolation, and other approximation
processes, when {x,,}7_, are chosen as the interpolation points. Recall that
if f:R—->R, then the nth Hermite—Fejér interpolation polynomial is
H{W? f. Ye®, , satisfying

Hn( W25 f; xjn) :f(xjn)

(1.4)
H,(W?, f, x,,)=0,

1 € j< n The type of result we show is

lim {sup |H(W? £, %)= f(x)] W(x)[1+]Q'(x)|17(1 + |x])~*} =0,

=D xeR

(1.5)

under suitable conditions on f, W? and x, including a bound on the
orthonormal polynomials. Here the damping factor [14|Q'(x)|17%
(1 +|x])~! decays very slowly relative to the weight W2

The corresponding convergence question was treated in an L,-setting in
an earlier paper [19]. A brief survey of the topic was given there, so is
omitted here.

To introduce the Hermite interpolation operator, and related approxi-
mation processes, we need more notation. Let [, €%, _,, 1<j<n, be the
Jundamental polynomials of Lagrange interpolation, satisfying

ljn(xkn)=6jk> 1 <]5k<n (16}

The fundamental polynomials of Hermite interpolation are then

Pl(Xn) s .
: =l (x—x,) (), I<j<n, 1.7
() 1= {1 =2 ) L, 1< (D)
and
]:ijn(x) = (x—"xjn) lji(x), 1<]<n (18)

H (W?, f, x) admits the representation

H (W2 £x)= Y £ () (). (19)

j=1
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If f'(x;,) exists, 1 < j<n, then the Hermite (or osculatory) interpolation
polynomial is

H (W2 £, x):

z ]n x)+ Z f( n) ﬁjn(x)' (1'10)
It is characterized by the interpolatory conditions
AP, fx,) =f®),  k=0,1;1<j<n,  (L11)

and by the condition H,(W? f,-)e %, ;.
Both H, and H, are special cases of the operator

H:(WZ {dln x) - Z f( n)hjn(x)+ Z in jn(x) (112)

satisfying
Hr:k(W25f; {dln})xjn):f(xjn) (1 13)
H:,(Wzaf; {dln}sxjn) djm
1<j<n
" In several classical cases [28] and in those treated in this paper, the
contribution to 4;,(x) from { p,(x;,)/ pu(x,, X;,) } (), is negligible. It

is then natural to introduce, as did Grunwald [9], the very simple positive
operator

Y (W2 £ x): Z fGxe) () (1.14)

Each of the approximation processes above generates a product
quadrature rule, involving approximation of

Ik f1:i=] k(x) f(x) dx. (L15)
Here the kernel £ is typically the “difficult” component of the integrand kf,
with known types of singularity or oscillatory behaviour. The component
f typically has “smooth” behaviour. The idea of the product quadrature
rule is to approximate I[k; f] by

LIk f1=[" k(x)H(W fx)dx (116)

n

= ¥ /) (jio k(x) hn(x) dx>. (1.17)
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Analogous rules are generated by H,, H*, and S,: We use the notation

LUk f1i= | klx) B (W2 £, ) d (1.18)
Ik Y i= | k) HEOW2 £, {dy ) ) d (1.19)

and
T.[k; 1= f: k(x) Y, (W2 £, x) dx. (1.20)

For a discussion of these rules, see [4, 197. Under mild conditions on f
and k, we shall prove, for example, that

lim I,[k; f1=1ITk: f]. (1.21)

n— oo

The paper is organized as follows: In Section 2, we introduce our class
of weights, and state the main results. In Section 3, we estimate certain
guadrature sums, using Markov-Posse-Stieltjes inequalities. That section
can be read independently, and is possibly of independent interest. In
Section 4, we present some technical estimates, mostly proved elsewhere.
In Section 5, we establish some Markov-Bernstein inequalities, and in
Section 6, we obtain Christoffel function estimates and deduce spacing
results for {x,}. Finally, in Section 7, we prove the results of Section 2.

We close this section by introducing additional notation. Throughout, C,
C,, C,, .., denote positive constants independent of n, x, and Pe%,. The
same symbol does not necessarily denote the same constant in different
occurrences. We write C= C(W) to denote (for example) dependence on ¥
and C # C(n, x) to emphasise that C is independent of # and x.

We use ~ in the following sense: If {c,}_, and {d4,}°_, are sequences,
then

c,~d

n n

means that
C,<c¢,/d, <C;, nzl

Similar notation is used for functions and sequences of functions. For
real x, {(x) denotes the greatest integer <x. Let ¥ < R. A function
% — (0, o) is said to have increasing tendency if

X, yes¥ and x< y implies f(x)< Cf(y).
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Finally, some further notation involving orthogonal polynomials: Let
W=e~9 as above. The nth Christoffel function is [25]

AW %)= inf r@ (PW)X(t) di/P*(x) (122)
- 1/'1_1 P2 x). (1.23)
j=0

The Christoffel numbers are
hin=An(W? x;),  1<j<n, (1.24)

appearing in the Gauss quadrature formula

f PGx)W¥x)dx=Y A,P(x,), Peh, .. (1.25)
. P
If we set

Pri=pu(W?) =, (W (W?),  n>1, (1.26)

then /;, admits the representation [25]

N
y
=

ljn(x)='ljnpnpn~l(xjn)pn(x)/(x_xjn): ! (127)

2. MAIN RESULTS

In our recent paper on convergence of Hermite-Fejér interpolation in
the L;-setting, we treated weights W2 =e~22, where Q is of polynomial, or
of faster than polynomial growth at infinity. These are called respectively
the Freud and Erdis cases. Here we also handle simultaneously Freud and
Erdos weights, but have to assume slightly different hypotheses in the two
cases:

DermNITION 2.1, We write We #] if

(a) W=e"9, where Q:R—> R is even, continuously differentiable,
Q" exists in (0, o), and

Q(0)=0. (2.1)
(b) For xe(0, ),
0'(x)=>0 and Q0"(x)=0. (2.2)
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(¢} For xe(0, w), let

T(x) == (xQ'(x))/Q'(x) =1+ xQ"(x)/Q'(x). (2.3
Assume that for some >0,
T(x}=1+mn, xe(0, o0). {(2.4)

Assume further that either

(i) T is bounded in (0, o0),
or

(i) T is unbounded and increasing in (0, oo ), satisfying there
T(x)< Cllog(2+ Q'(x))1* (2.5)

The above conditions are slightly more restrictive than those in [197].
While (i) guarantees that Q is of polynomial growth at infinity, (ii) forces
0 to be of faster than polynomial growth at infinity. In the latter case, {2.5)
is a rather weak regularity condition: Under very general conditions on @,
it is satisfied for “most” x.

As examples of Q for which W=e~9¢ %], we mention

O(x):=1Ix*,  p>1 (2.6)
(this satisfies (i)) and
O(x) :=expi(|x|”) —exp,(0),  f>1,k>1, (2.7)

where exp, :=exp(exp(.. exp( )..)) denotes the kth iterated exponential
(this satisfies (ii}).

We also need to assume a bound on the orthonormal polynomials, and
to this end, must define the Mhaskar—Rahmanov—Saff number a,=a,(Q),
u>0. This is the positive root of the equation

2 (' a,1Q'(a,1)
_nfo iBvara d, u>0. (2.8)

Since s@'(s) is positive and increasing for se (0, o0 ), with limits 0 and o
at 0 and oo respectively, a, is uniquely defined. Moreover, g, is increasing
for ue(0, c0), with limits 0 and oo at ¢ and oo respectively. The
significance of a,, is explored in [20, 22, 23].

DEFINITION 22. Let W:=e 2ecw,. We write We ¥, if there exists
o =0c(W)>0, such that for n>1,

Ip. WL+ 191177l 1y < Ca 2 (29)
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We remark that ¢ =o(W) >0 exists, when, for example, Q is given by
(2.6) with f>1, or by (2.7). This follows from asymptotics given for
P(W? x) in [14,29]. For these Q, and for all those Q for which
W=e¢"2e4, and for which orthogonal polynomial asymptotics were
given in [14], one can choose any

o’}l(l—l—l), (2.10)
2 n

where # is as in (2.4). This follows from the bounds in [14] and Nikolskii
inequalities in [24, 27], and from the bound (4.5) below.

For the case where Q, is given by (2.6), with f§ a positive even integer,
Bonan and Clark [27] showed that

Ip2W2, < en= Y8, nx1 (2.11)

This bound implies that in this case we can choose
a=gB/(B—1)  (LD) (2.12)

Results of Bauldry [1] imply (2.11), and so allow (2.12), for more general
weights. v

While the assumption (2.9) does not yield the sharpest possible results,
it allows tractable and close to sharp results, for all the weights for which
orthogonal polynomial asymptotics were given in [14].

Following is our main theorem, establishing boundedness in weighted
sup-norms, of {H,}, {H,}, {¥,}, and {H*}:

THEOREM 2.3. Let We W, and 6 = a(W). Let f: R — R satisfy, for some
e>0,

A=sup | f(x)] W(x)[1+1Q'(x)| 12+ *(1 + |x])* < 0. (2.13)

xelR

If T is bounded, let
K>20+1, (2.14a)
and if T is unbounded, let
k>max{2c+1,40}. (2.14b)
Furthermore, let

V(x):=[1+]Q'(x) 171+ |x|) 1, xeR. (2.15)



HERMITE AND HERMITE-FEJER INTERPGLATION
(a) Then for n=1,
” Yn(Wzs fo ) WZV” Lo(R) < C1A>

where Cy# C(n, f).

(b) Further for n>1,

a 1/2
L2 )= W2 L) WP, < € (%) = o),

where C,# C,y(n, f).

(c) Suppose that {d,,},, satisfy, for some 6 >0,

Bi= sup |d,| W2(x,)[1+1Q/(x;,)| 17 +3(1 + x,,] ) < 0.

Then for n>=1,
YW 1) = HXW, £ {dy s ) WL
1/2
<c, (";) [A+B]=o(1),

where Cy# Ci(n, f, {dy}).
(d) Suppose that [ exists in R, and for some & >0,

D :=sup | f(x)] WHx)1+|Q )T H1H2(1 + |x])* < 0.

xeR

Then for n=1,

WY W21, )= HW2 1) WY 1wy

4y

1/2
<c, (;) [A+D]=o(l),

where C,# Culn, f).

291

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

Remarks. (1) The message of (b)-(d) is that the operators H,, HF,
and H, are “equiconvergent” with the very simple positive operators

YW fx)i= Y S 2(x),  n>L.

(i1) We note that the damping factor 7 decays extremely slowly in
comparison to W2 It is undoubtedly not the weakest possible damping
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factor for W=e 2, where Q is given by (2.6) and (2.7), but for the general
class #, (and given the present knowledge about orthogonal polynomials
for weights on R) is all that can be achieved. The value of k and the powers
of (1+1]Q']) and (1+ |x|) can be improved for some of the statements
above—see Theorems 7.5 and 7.6.

(iii) Even when T is unbounded, mild additional conditions allow us
to assume (2.14a) rather than (2.14b). In particular, all the Erdés weights
treated in [ 14] allow this choice, as the correct lower bounds are available
for the Christoffel functions.

(iv) For the Freud case, |Q'| is of polynomial growth, so V(x),
defined by (2.15), can be replaced by (1+|x|)~* for suitable a>0.
However, this is not possible for the Erdds case. In both cases we could
replace V(x) by (1 +|Q'(x)])#, but again as |Q’| can grow so much faster
than any power of |x|, this would weaken the statements.

(v) We remark that the bound

1Cpn W)X) 1 = (x/a,)*1 " 1y < Caay 2,

has been established for the weight W?*(x)=exp(—x*"), m a positive
integer [2]. Assuming such a bound, or more generally,

|| pn Wun“ Lo(R) < Can_ 1/29
allows us to prove analogous of Theorem 2.3, with V replaced by factors
involving u,. See [13, 14, 21] for related bounds.
The boundedness of the operators above, and density of the polynomials

in suitably weighted spaces, yields:

COROLLARY 24. In addition to the hypétheses of Theorem 2.3, suppose
that f is continuous.

(a) Then
Bm [(F, (2 £, )= () WPV L =0, (222)

and
Hm (2, 1, )= f() W]y =0, (223)

(b) Assuming (2.18), we have
lim ICHFW?, £ {di}, ) = F () WV Ly =0, (2.24)
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and assuming {’ exists in R and satisfies (2.20), we have

Hm (A (W2 f, )= f() WV my=0. (2.25)

- 00O

For the special case of the Hermite weight, W?(x)=exp(—x?), (2.23)
contains a substantial improvement of the results announced by Knoop
[10] that H,(W?, f,-)— f uniformly on compact subsets of R, when f is
of at most polynomial growth at infinity. To the best of my knowledge,
Hermite~Fejér interpolation for weights on R has only been considered
previously for the Hermite weight.

For the product integration rules 7, 7, 7* and J,, defined by
(1.16)-(1.20), we can prove:

COROLLARY 2.5. Assume the hypotheses of Cerollary 2.4 on f and W>.
Let k: R — R be measurable, and assume that

| T k() W) V() dxe < oo, (2.26)

where V is given by (2.15).
() Then

lim J,[k; f]=1I[k; f]:= j k(x) f(x) dx, (2.27)

[s &)
Hn— 0 —

o0

and

im I,[k;f]1=1ITk:f] (2.28)

{(b) Assuming (2.18), we have
lim L¥[k; f1=1Tk; f1, (2.29)

n— oo

and assuming [’ exists in R and satisfies (2.20), we have

lim 7,[k; f1=1I[k;f]. (2.30)

3. QUADRATURE SUM ESTIMATES

In this section, we estimate quadrature sums of the form

Z ljn W_Z(xjn) ix - xjni Vp?

jes

for suitable % and p > 0. The main result—Theorem 3.1—is of independent



294 D. S. LUBINSKY

interest, so is proved in greater generality than the rest of this paper. The
Markov-Posse—Stieltjes inequalities applied in a suitable form, enable us to
estimate the above sums.

THEOREM 3.1. Let W:=e 2, where Q: R — R is continuous, even, and
differentiable in (0, o0 ). Assume further that
(a) sQ’'(s) is positive and increasing in (0, c0).
(b) There exists B> 1 such that
BsQ'(Bs)—sQ'(s)z 1, s> 1. (3.1

Let p be a positive even integer, let n>1, and x€R. Let x;,=x,(W?),
A= /ljn(Wz), 1< j<n, and choose

Lme{l,2,.,{n2>}, (3.2)
such that
|x] > x4, (3.3)
|X] <Xpiin (3.4)
Then

Z ljn W_z(xjn)Ix—xjnl_p<C1(|x|_xln)wp-'—la (35)

J: |xjn1 < X141,n
and
Z j'jn W’-z(xjn) Ix—xjnlvpgcl(xm-f-l,n_|x|)_p+1a (36)

J 1 xml = Xmn

where C,# Ci(n, x,m,[) but C,=C (W, p). If we cannot choose | or m
satisfying (3.2) to (3.4) then the corresponding statement is omitted.

Remarks. (a) Q(x):=|x|f, B>0, satisfies the above hypotheses, as
does Q(x) :=exp,(|x|%), B>0, k= 1.
(b) For arbitrary p>0, we can estimate the sum in (3.5), see
Lemmas 3.3 and 3.4.

{c) The estimation is possible largely because of the existence of an
even entire function G~ W2 constructed by Clunie and Kévari [3]. For
finer results of this type, see [14, Chap. 6].

LEMMA 3.2. Let W be as in Theorem 3.1. There exists an even entire
Sfunction

G(x) = _Z gxY,  g520, j=0, (3.7

j=0
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such that for some C,, C,>0,
C,<G(x) W (x)<C,, xeR (3.8)

Proof. In order to conform with the notation of [3], we define, for
>0,

$(r) :=exp(2Q(r'?));
Y(r) =rd'(r)/(r) =r'?Q'(r'?).

Then ¥ is a positive increasing function in (0, o) and ¢ admits the
representation

$(r) = $(1) exp (jr@ds» r> 1

1

Furthermore, by (3.1), for r =1,
W(Br) = Y(r) = BrPQ' (Br'?) — 10 (r') > 1.

By Theorem 4 of [3, pp. 19-20], there exists an entire

f(Z) = Z ngZja g2j>03j>07
ji=0

such that

max lf@=f(r)~o(r), r=1

Setting G{x) := f(x?), and increasing g, (if necessary) so as to make it
positive, we obtain (3.8). ||

The proof of Theorem 3.1 will be broken down into several steps.

LemMA 33. Let W be as in Theorem 3.1. Let p>0, let n=22 be a
positive even integer, and let x € R. Choose [ satisfying (3.2} and (3.3). Then

21 = z Aﬂ’jn W‘2(Xjn) ix-xjn! w7

T Xl < x141,n

<C, r’" (x| = £)~* dt, (3.9)

where C, # Cy(n, x, I, p). The sum is taken as empty if the choice (3.2}, (3.3)
is not possible.

640/70/3-3
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Proof. Let k:=n/2 and
Ul(t) = Wz(tl/z)/tl/za te(os w);

and 0 otherwise. It is well known (cf. [6, p. 50; 11, p. 91]) that
pAW? 82 = p(U,; 1);
x]?nzxjn(Wz)zz'xjk(UIL 1 S]Sk,

(3.10)
2'{jn = 2j'jn( Wz) = }“jk( Ul )a 1 <J< k

Then using the symmetry properties of the zeros and Christoffel numbers
for the weight W2, and using Lemma 3.2,

Yo=Y AW Xl = x| x|+, 7]

JiO<Xju< X141,

<C Z AjnG(xjn) 2 x| = jnl -

J:10<Xin < X[+ 1,n

<2 T BGE) - (/P

j:0<xj,.sxl+1,(1
(as 29(1 +x,/1x1) > 1)

=Gy lx|™” )y A H(x3,) f(x3,), (3.11)

Ji0<Xpm<X141,n

where
H(s) :=G(s'?)= i gzjsj, se (0, o), (3.12)
and -
£(s) :=(1—s/x2)~1’=§0 (7)) emre serow @3)

Note that both A and f have non-negative Maclaurin series coefficients,
and hence that Hf is absolutely monotone in [0, x?); that is,

(Hf)(s)>0,5€[0,x%),  j=0.
Reexpressing (3.11) with the aid of (3.10) yields
k
Zl SCylxl ™" Y AlUy) H(x(UL)) f(x(UY)).
j=i+1

We can now apply the classical Markov—Posse—Stieltjes inequality for the
weight U, to deduce that

T <G b= [ B 0y Uiy

X,
0
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(See [6, pp. 32-33] for the Markov—Posse—Stieltjes inequality. However a

clearer formulation appears in [18, p. 222, Lemma 3.2], but take account
that there the zeros are ordered in increasing order.) Then

/2

¥, <Catxl 7 [ HE) 167 WRs) 2.ds

xi(W?)
<Colx 7[0S ds
0
by (3.10) and by Lemma 3.2, which shows that

H(s*) W(s)=G(s) W(s) ~ 1 in R.
Finally,
x| =2 f(s7) = |x| 7P(1 = (5/]x])*) 7
<Ix| 7P =s/Ix)) 7P =(Ix]—s) " §

Next, we deal with # odd. This is a little more difficult.

LEmMMA 34. Let W be as in Theorem 3.1. Let p>0, let n be an odd
positive integer, and let x € R. Choose [ satisfying (3.2) and (3.3). Then (3.9)

is valid for some C,# Cy(n, x, I, p). The sum is taken as empty if the choice
(3.2), (3.3} is not possible.

Proof. Let k:=(n—1)/2 and
Uy(t) = t"2W?(1'?),  1e(0, ),
and 0 otherwise. It is known (cf. [6, p. 501, [ 11, pp. 89-90]) that
P W3 12)[12 = p (U 1);

2=

Xin X5 w2y = xjk(UZ)y

S R . ' (3.14)
24,,%5, = 24,(W?) x,(W2)* = 1,(U,), 1<j<k
Then
zi = x| 7PA4 4 1n W= (X, 1n)
+ z ;'jnW_z(xjn)[¥ |x‘_xjniﬁp+l lxi_i_xjnl_p]
Ji0<Xjpn< X410

< |xl ‘Pik+ ,n W~2(xk+ l,n)

+Cx77 Y AwH(x3) f(x3),

JiO0<Xjp < X4 1n
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exactly as at (3.11), where H and f are defined by (3.12) and (3.13). Note
that we have used x; ., ,=0. Now let

H,(t) .= (H(t)— H(0))/t= i gtV te(0, o).

j=1
Then we have
21 SIX| P 1a WA Xp 4 1,0)
+ CZ |x! -’ Z j’jnsznHl(x]Zn)f(x]zn)

JiO<Xp<xiqn

+ G, [x|7PH(0) ) A f(x7,)

J0<Xjpp < Xit1,n

=:Zl,l+zl‘2+zl,3, (3.15)

say. First, the classical Markov-Stieltjes inequality for W? yields
Yo = X P A1, W R(0)

<Ix|~” ( [  wr dt> ()

Xk+2,n
Xkn
—2|x* (f W(1) dt) W=(0)
0
(88 Xty 2,0 = —Xicn)
Xkn
<2|x|7* dt
x|
(since Q(z)= Q(0) in (0, «0))
Xkn Xin
sz[ (x| — 1)~ dtszj (x| — 1)~7 dr. (3.16)
0 V]
Next, we handle the main term 3}, ,: Using (3.14),

Y,=Clxl™" Y AxpH(x3) f(x,

Jt 0<X]n<xl+ln

=(C,/2) |x|* Z k(Uz H(x k(UZ))f(xjk(U2))

j=I{+1

<@l [ Hy0 10 Uy
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(by the Markov—-Posse—Stieltjes inequality for U,)

w?)

—C,lx|" j:'"( Hy(s?) f(s) Ws) s* ds

<Gy lx|77? FIH(WZ) H(s*) f(s*) W?(s) ds
(for s2H,(s*) = H(s*) — H(0) < H(s%))

xin( W) N
<Gy jo (x| — )7 ds, (3.17)

exactly as in the previous lemma. Finally, we estimate 3., ;. First, note that
for xjn € [07 |Xi )7

J03) = (1= (5/1x1)) 72 < (1= %30/ 1x1) ™ = g(x,0),

where
gy =Q1—¢|x|)7  te(—o0,|x]).

Here g is absolutely monotone in (—oo, |x|), as is easily verified by
successive differentiation. Then the Markov-Posse—Stieltjes inequality for
W2 [18, p. 222, Lemma 3.2(i), (ii)] yields

21,3 = C, |x| "?H(0) Z )“jnf(x]?n)

Ji0<xp< X410

<C2 IX’*pH(O) Z j'jng(xjn)
j:0<xjn<xl+1,n

R n

¢, fxrpr)[ ) ]zjngu,-,,)
j=lei j=k+1

<c:ld 0| [* <[ et W a

= C, |x|~7H(0) j:’" g(r) W(t) dt

<CHO) W) [ (1x1—0) 7 db,

as W is decreasing in [0, o). Together with (3.15) to (3.17), this yields the
result. J§
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Next, we handle the somewhat more problematic terms in (3.6). Here the
summand can no longer be absolutely/completely monotone in the relevant
range.

LemMma 3.5. Let W be as in Theorem 3.1. Let n and p be positive even
integers and let x € R. Choose m satisfying (3.2) and (3.4). Then

22 = z ’ljn I/sz(xjn) |x_xjnlvp

Jj: |xjn| 2 Xn

sczfo (t—Ix])” db, (3.18)

Xm+1,n

where C,# Cy(n, x, m, p). The sum is taken as empty if the choice (3.2),
(3.4) is not possible.

Proof. Let U, be as in Lemma 3.3 and let G be as in Lemma 3.2. Then

Yoi= n AW Il = X TP 1 x4 gl 77

J: Xjn 2 Xmn

SCi Y AuGlx) 21 X[ =, 77

J i Xjn 2 Xmn

<2TC F AG () PR = (Il

J X = Xmn
(as 27(1 + |xI/%,,) 7> 1)
= 2p+ IC’1 Z Ajn G(xjn) fl(xj?n)a

J 1 Xjn 2 Xmn
.]

It is crucially important here that all these series coefficients be non-
negative and that j+ p/2 be an integer for j>0. Then we can write

where

o0

Ay =P =) 7 = X

Jj=0

x¥tiP2 0 i>x% (3.19)

o

G(t) fr(t)= ) B.t%, t>x%, (3.20)

i= —o0

where §,>0 for all i. Then

¥, <2710, ¥ ﬂi( Y i,»nxf,f)

i = J T Xjn 2 Xnn

=:27%1C Y B (3:21)

f== — 00



HERMITE AND HERMITE-FEJER INTERPOLATION 301

say. Of course, the interchanges are justified by non-negativeness of the
series terms. Now we can use (3.10) to write

= z Ajnx}rizé Z ;“jk(Ul)xjk(Ul)i' (3.22)
j=1

J X2 X

Suppose first i>0. Then the function ¢— 1 is absolutely monotone in
[0, 0) in the sense that all its derivatives are non-negative. By the
Markov-Posse-Stieltjes inequality for U, [18, p.222, Lemma 3.2], [6,
p-92, Lemma 1.5]

L) )ﬂy,-k(Ul)xjk(Unf

<! (f:o —rm“’"(w> 71U (1) dr
|

o]

tU ) de

xm+1,n(U1)

— fm SW(s) ds. (3.23)

Xm41,n( Wz)

Next, suppose i <0. Then the function ¢ — ¢ is completely monotone in
(0, o0} in the sense that

rdN
(_1)'<Ei> >0, te(0, ), j=0.

Then the Markov—Posse-Stieltjes inequality for U, [18, p. 223, Lemma 3.3]
yields

1 e . © )
<= U (1) dt = SAW(s) ds.
X 2J‘-*m+1,n(U1) 1( ) J‘ ( )

X+ L, W2)

Substituting (3.23), which we have shown valid for all i=0, +1, +2, ...,
into (3.21) yields

22<2”“C1Jw ( > ﬁ,-s”) W?(s) ds
X 1,n(W2) \;

—

—rie, [T Gl £ WAs) ds

X+ 1,nl WZ)
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(by (3.20))

<G s

Xm+ l,n( Wz)

by Lemma 3.2. Finally,
fi(s?) =571 = (Ix1/s)*) 7 <s7P(1~ |xl/s) 77 = (s — |x[) 7. |

Finally, we deal with the sum (3.6) for n odd.

LemMa 3.6. Let W be as in Theorem 3.1. Let n be an odd positive
integer, p be an even positive integer, and let x € R. Choose m satisfying (3.2)
and (3.4). Then (3.18) holds, where C,+# Cy(n, x, m, p). The sum is taken as
empty if the choice (3.2), (3.4) is not possible.

Proof. Let U, be as in Lemma 3.4. Let f; be as at (3.19). Exactly as in
the previous lemma, we obtain (3.21). So we must estimate y;, i=0,
+1, +2, ... Using (3.14), we see that

m

=X A p; 32 AUy x(Uy) 1

J 1 Xjn = X j=1
Proceeding exactly as in the previous lemma, we see that for ali i,

1< h t=1U,(1) dt

Xm+ I,n( U3)
© .
= s*W3(s) ds.
Xm + 1L,n( w?)

We can then proceed as before to obtain (3.18). ||

Proof of Theorem 3.1. For n even, (3.5) follows from Lemma 3.3 and for
n odd, from Lemma 3.4. For n even, (3.6) follows from Lemma 3.5, and
for n odd, from Lemma 3.6. |

4, TECHNICAL ESTIMATES

In this section, we list some technical estimates, mostly proved in other
papers.

LemMMA 4.1. Let We W, and nj :=n(W) be as in (2.4).
(a) For x>0,L>=1,

O(x)<L™'Q(Lx). (4.1)
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{(b) 3AC>0 such that

Q(a,) < Cu, ue (0, o).

(¢y 3C,, C,, Cy such that

(d)

Q'(x) = Cx7, xzCs.

0(x)>Cox' ™, x>Cs

a,< Cqut/t+m, uzCs.

(e) There exist Cq, C,, Cy such that for vzuz Cg,

(1+ Cofu)(ofu) ' " > a,fa, > (oju) ee 1),

303

(4.2)

(4.3)
(4.4)

(4.5)

(4.6)

Proof. (a) to (d) are Lemma 3.1 in [197; (e) is Lemma 3.2 in [19].
Note that # is contained in the class # of [19]. §

We recall, for the reader’s convenience, that “increasing tendency” was
defined at the end of Section 1.

LEMMA 4.2. Let We#, and n :=n(W) be as in (2.4).

(a)

(b)

()

Foruz=C,,
u<a,Q'(a,)<Cul(a,)* < Cyulogu
For uzC,,
0'(a,) > Cou <)

T has increasing tendency in (0, 00).

max T(x)< Ce(logu)’, uzC,.

x| <ay

Cs/(uT(a,)) < a,/a, <Y(u(l+7)),  ue(0, o)

logr
aru/au>exp <C9 T(a )>

> 1+ Co(log r)/T(a,,)
=14 Cyo/(log u)?,

ue (0, ), re(l, o). Here Cy+# Colr, u) but Ciy= C,o(r).

(4.7)

(4.8)

(4.9}

(4.10)

(4.11)

(4.12)
(4.13)
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(g)

1<a,ja,<r04"  ye(0, o), re(l, o). (4.14)

ruit

Proof. (a) For the inequality a,Q'(a,)>u, see, for example, Lemma
3.3(b) in [19]. Next, when T is bounded, Lemma 3.1(c) in [12, p. 1071]
shows (under less restrictive hypotheses) that

a,Q'(a,)~u,
and hence as T is bounded above and below,
a,Q'(a,)~uT(a,)".
When T is unbounded, Lemma 2.2(c) in [15, p. 200] shows that
a,Q'(a,) < CuT(a,)"”. (4.15)

(Note that in [15], =T and we choose j=1). Thus (4.15) holds whether
T is bounded or unbounded. Finally, (2.5) yields the rightmost inequality
in (4.7).
(b) This foliows from the leftmost inequality in (4.7) and from (4.5).
(¢) If T is unbounded, then we assumed it is increasing, and so
trivially has increasing tendency. If T is bounded, then T~ 1 in (0, ),
so the increasing tendency is again trivial.

(d) By (c), and by (2.5) and (4.7),

max T(x) < CT(a,) < C,(log u)

|x] < ay

(e) Differentiating (2.8) with respect to u yields

2 [ 4@ (et) Tia,0)

1= ,
0 (1_12)1;2

a,n

dr.

Since
l+n<T(a,t)<CT(a,), te(0,1],u>0,

the definition (2.8) of a, yields

al
1<C{ =2 )ul(a,);
C<au>u(au)

(%)t o

u

Hence (4.10).



HERMITE AND HERMITE-FEJER INTERPOLATION 305

= X ( [ a;/a,dt>

u

> exp (cg ["eTay dz) (by (4.10))

u

>CXP (ClllT(aru)f1 j ’ 1‘71 dt)

u

= exp(Cll T'(aru)i1 log r)'

Then (4.12) also follows and (4.9) yields (4.13).

{g) This is similar to (f): Use the upper bound in (4.10) rather than
the lower bound. ||

Lemma 4.3, Let We ). There exists n, such that
(1) P =V o Wp(W?) <as,,n>n,. (4.16)
(i1) X=X (W <as,, n=n,. (4.17}
(i) Fornz1land 1 <j<n,

| 2 O )P (35)] < CLL+ Q7 (x,)1 1 (4.18)

Proof. For (i), (ii), see Corollary 4.4 in [19]. For (iii), we use (5.5) in
Lemma 5.1 in [19] and Lemma 5.3 in [19] to deduce (with the notation
there) that

|p;,1/(xjn)/p;1(xjn)| = IZQ’(xjn) + A;(xjn)/An(xjn)l
SCI+10'(x)11 B

5. MARKOV—BERNSTEIN INEQUALITIES
In this section, we present some L. Markov-Bernstein inequalities.

Recent work on this topic appears in [12, 17, 24, 26]. For fairly general
Freud weights, it is known [12] that

n
1P Wiy + 1P iy SC IPW e P2 (51)
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For fairly general Erdos weights W, it is known [15] that

) n .
1P 1y + NPV @y SC = T(@) 2 IPW | ey P (52)

The unbounded factor T(a,) cannot be replaced by a more slowly growing
factor [14].

Since we can only deal with n/a, in the context of the paper, we prove
inequalities in which 7(a,)'? is replaced by a function of x, independent of
n. The main result of this section is:

THEOREM 5.1. Let W:=e “e¥,. Let e R. Then for n>1 and Pe 2,
ICIP' W]+ 1(PWYIIL1 +1Q'11P[log(2 +12'D] *F /ey

n
<Ca_5|PW[1+IQ,|]””L,,(:4;' (5~3)

n

Here C # C(n, P). If T is bounded, then the fuctor (log(2+ |Q’|)) 2 may be
omitted.

We remark that when T is unbounded, stricter regularity assumptions on
Q allow us to replace (log(2 +|Q’|))~? by the “correct” factor T~'/2. Our
first step in proving Theorem 5.1 is an infinite-finite range inequality.

LEMMA 52, Let W:=¢ “YeW#,. Let 0<p<oc, a=0 and B, 4eR.
Then 3C # (n, P) such that for n>1 and Pe %,,

IPWLL+1Q11%[log2+1Q'D1" 1)

S+ Cn=*) |PWLIL+ Q11002+ 10D N it - appanrs (54)
Furthermore, for n21 and Pe &,,
IPWLL+1Q'11°THog(2 + 10" D1%N 1015 ay
SCn T PWI L oo (5.5)

Proof.  Under somewhat weaker conditions on Q than those for #;, it
was shown in [19, Proof of Theorem 4.3] that if ' >0,

PW[1+ |Ql|]B’”L,,(|,|>adn)Sn_zz ”PW”LP(R)’ nzn, Pe?,

Applying this with the special case §'=0 to the right hand-side yields

IPWLL+1Q11 1 Ly 5 a0 <20 I PWI, nzn,, PeZ,.

pl -adn.asn]?



HERMITE AND HERMITE-FEJER INTERPOLATION 307
Since for any 4, feR, 3’ 2 0 such that

[1+1Q[log2 + 1N C 141011 iR,

we then obtain (5.5) at least for » = n,. The remaining finitely many # can
be treated by a compactness argument. To deduce {5.4) from (5.5), we note
that

IPWN Lyt gy a1 S IPWLL 1011 082 + 10D 1N 1, - agn e
x [1+0'(as,)1" [log(2 + Q'(as,)) 1
SCn*? | PWIL+10'17F [1og(2 + 19" D171 Lyt —asn

aan 12

if o/2> |, and we have used (4.7) to bound @Q’(a,,). Substituting this last
inequality into (5.5) yields

IPWI1+]0'|1 [log(2 + 1014 Ly(1t] > aam)
SCin~ 2 PWIL+|Q11°og(2 + 10D Lyt — aanasn-

Since o may be replaced by 2a and a,, # a4,(a), we obtain (5.4). §

We use [12] for Freud weights, and [15] for Erdds weights, in proving
Theorem 5.1. First, Freud weights:

LEmMA 53. Let We#, and assume that T is bounded. Then 3C such
that forn=1 and Pe Z,,

n
[P W+ 1P e < C = |PW] oy (5:6)
Proof. By Theorem 1.1 in [12, p. 1066]

1P Wy < ( " ds/Qf'”(s)> [PW L (5.7)

n>1, Pe?, Here Q7' denotes the inverse function of Q. Also by
Theorem 1.3 in [12, p. 1067] with n =1 there,

n
”(PVV),“LGO(M>a,,/2)< C;‘ HPW” Lo(R) (5-8)

and

Cn
T P ( J dS/Q[‘”(S)) W, (59)
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nz1, Pe, 1t clearly suffices to show that

0, = fC" ds/0" " Ys) < Cynfa,. (5.10)
1

Now it is shown in [12, p. 1071, Eq. (3.6)] that
a,xQ’'(a,x)~ Qla,x)~n, (5.11)

uniformly for xe [a, b], any 0 <a<b < co. Then for n= 1, J> 1, and some
C3 96 C3(J> n),

Q(a,,) = CsJn.

Together these imply that for some fixed integer J >0, and with C as in
(59),

Q(as)=Cnnzn,.
Then

Jn

0,< [ a0 <[ Qo

-1
Now for 0 <e<,
d
7 (Q'()Yy=Q'(t) 1 "X(T(t) — 1 —¢)
>(n—e)Q (1)t~ 17>0, t>0,

so Q'(r)/t® is increasing. Then

0,<Q@maz [
ol

< C‘Ath(aJn)< C5n/ans
by (5.11). Hence (5.10). |

LEMMA 5.4. Let We W] and assume that T is unbounded. Then 1C such
that for n=1 and Pe #,,

Y ' , _ n
1P W]+ [(PW) [ 1log(2+[Q'])] 2||LOO(R)<CG— 1PN Ly (512)
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Proof. Let us first assume that Q" is continuous in R. For n>1 and
xe[0, 1], let

~1/2 anxQ,(anx) B anSQ’(anS) ds
a,x—da,s

bal)i= [ (1=

and

A* =n~! fl (1—35)""*(a,s)*Q"(a,s) ds.

1/2

A result in [15, pp. 194-1957 states that for n=n,, Pe %,

{PWY(N S CIPW,, @ (1 - g— ) J UL () — )2 dt,
n |x/ay| (5.13)
|x] < a,(1 — (nA¥)~23),
Furthermore,
n
IPWY | Lt w21 < € - IPW L - (5.14)

Since [15, p. 200, Eq. (2.15)]

lim a,0(a,/2)/n=0,

it follows that
max{|Q'(x)| : |x| <a,/2} = o(n/a,),
so (5.14) also yields

n
TP W+ IEWY I -2y S € IPW Ly, (315)

Pe? nzn,.
We now deal with |x| = q,/2. Now in [ 15, p. 208, Eg. (3.26)], it is shown
that

w()(1 — z)1/2~a1 1,(¢) uniformly for 7€ [, 1),

n

n>n,;. Here u, is a non-negative function in [ —1, 17 with [15, p. 205]

jl 0 di=1.
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Hence for |x| € [a,/2, a,],

1 1
| wa-o@a<c, X[ pod<c =
| xian| n v lx/ay n
Next, by definition of 7, we can write

A¥=p~! jl a,50'(a,5)(1 —s)~"*(T(a,s)— 1) ds

1.2
=nn" fl’ a,50'(a,s)(1 —s*)"'? ds (by (2.4))

= nn/4,

by definition of a, and since «,sQ'(a,s)(1 —s?)~ "2 is increasing in (0, 1).
Hence we can rewrite (5.13) in the form

)]

PWI(x) + 1(PW) ()] < |PW||L1(R,[|Q'(x)I +czaﬁ<1_
(5.16)

n

nzn,, Pe?, a,2<|x|<a(1—Cyn **). In view of (4.13) in Lemma
4.2(f), we also have this valid for a,/2 <|x| <a,,. Now for such x, write
|x| =a,, where 0 <u < n/2. Then by (4.7) and (4.8),

iXQ/(X)‘ < au Ql(au) S C} u(log u)
< Cuullog(2+Q'(a,))1<Cy g[log(Z +1Q0'(x)N].

Since |x| 2 a,/2, we obtain

10'(x)] < C5—log(2 + Q' (x))), (5.17)

n

a,/2<|x|<a,;,. Also recalling our definition |x| =a,,

(=) -0-2)

-1
S(l—&) (as n=2u)

as,

X

a

n

<Cylogu)®  (by (4.13))
< C,[log(2 + Q'(a,))]* = C,[log(2+ Q'(x)) 1%,



HERMITE AND HERMITE-FEJER INTERPOLATION 311

by (4.8). Together with (5.17) this enables us to write (5.16) in the form
[P'W] (x)+ [(PW)(x)|

<SG 1PV L m) ai {[log(2 +1Q'(x)1)] + [log(2 +1Q'(x))]*},

nzn,, Pe%, a,/2<|x|<a,,. Combined with (5.15), this yields
ILP' W]+ 1(PWY 10082+ 10D 2H 1o r— anprana

n
< CQ “PW” Lo(R) ;,

nzn;, Pe?, Replacing n by 8n,
ICLP WL+ 1(PW) 1 Tlog(2+1Q'D1 721,

Lol — aan, aan]

n
§8C9 ”PWHLQO(R)a_, (518)

n=n,, Pe?, Now by (5.5) of Lemma 5.2,
NP W]+ 1(PWY | 10g(2 + 101121 Loger > aen
<2 1P+ 101 1PWIILog2 + 10D T2 24> aen
<Ciont P IP WLt agant Cront 2 IPW L g,
(by (5.18))

n
< C11n72 ; [log(2 + Q'(a4,,))]2 | PW Loy T C10n~2 1PW| Lol — aan,

24n]

a4n]
SCo [P L vy

in view of (4.7). Together with (5.18), this establishes (5.12) for n > n,. The
remaining finitely many » can be treated by a compactness argument.
Finally we note that we used the continuity of Q" only in applying
Lemma 3.2 in [15, p. 208 ]. Furthermore, (5.12) does not involve @". When
Q" is not continuous at 0, a straightforward argument yields (5.12) in the
general case [15, pp. 221-2227. |}

Next, we approximate the factor [1+|Q'|1[log(2+1Q')]* on
E~aan5aan :

LemMa 55 Let Wi=e Ce#,. Let B,4cR and a>0. There exist
polynomials R, of degree at most o(n), n— o, such that for n= 1, we have
in [—aana aan]

R,~[1+]Q'|1[log(2 + 101 (5.19)

640/70/3-4
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and

|R;| < Clog(n +1))*[1+1Q'|1[log(2+ Q') 1. (5.20)

Proof. We note first that we may assume Q" is continuous at 0, since
we are only looking for ~ in (5.19): If not, modify Q in [ —1, 1] to obtain
a twice differentiable Q, there. Now in R,

¢:=[1+1Q'11"[log(2 +Q')]*

~[1+ Q1" [log(2+ Q"*)]* =exp(¥), (5.21)
where

Y= g log(1+ Q'*)+ 4 loglog(2 + Q'%). (5.22)
Let

[(8) :=r(ay,,t), te[~-1,1],n21. (5.23)

Then by (4.7),

1l s =117 < Cy log(l + Q'(¢241)?) < Cy log(n+1). (5.24)
Also
(Q'9")a5,1)
1 + Q,(aZant)z
2(2"Q' Nazqn?)
(log(2 + Q' (@2en 1’2 + Q' (220,)*)
aZanQ”(aZant)
(1 + Q’(alant)z)l/z‘

Ifn’(t)l = 1oy B

+ay,, 4

<G

Now for 1 < |s| < a,,,,

1Q"(s)/Q"(s)] = |T(s)— 11/|s|
< T“ Loo[ — @20 @201 < C4(10g(n + 1))2

Then (4.14) and the continuity of Q” ensures that

Ifall rp—111 < Csa,(log(n+ 1)),  nzL (5.25)

Let ¢, denote the polynomial of degree <{Csa,(log(n+1))>> of best
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uniform approximation to f, on [—1,1]. By Jackson’s theorem on
approximation by polynomials,
1/ — @.ll L1115 Cs I fall Lx[q,]]/degree((Pn) < (5. (5.26)

Now by standard results on derivatives of polynomials of best approxima-
tion [5, p. 84, pp. 10-1117,

max (1 —1)" g, ()] <Cy max (1—1%)"|f(1)]
re[—1,11 re[—1,11

< Cya,(log{n+ 1)~
Then for |#| < a,, /024,
@)l < Coa,(log(n + 1)) (1 —(a,,/a2,,)7) "
< Coa,(log(n+ 1))?, (5.27)

by (4.13). Now let 7,(u) denote the (k + 1)th partial sum of the Maclaurin
series of ¢¥, k> 1. It is well known that

Ci <t{u)e™<Cyy, ul <Cpk, k=1 (5.28)
Let us note from (5.24) and (5.26) that
[@ull £op 1.7 < Cralog(n+1).
Then we can choose k = k(n)= O(log(n + 1)), such that if
R, (u) = Th(@,(1/5,,)),
then in view of (5.28), for ue [ ~a,,, 4,1,
R, (u) ~ exp(o,(u/az,,))
~ exp([f(1/a3,,)) = exp(Yr(u)) ~ §(u),
by (5.26) and (5.23). Furthermore, for uc|[—a,,, a,,1,
| R ()] = 1Tty (@ (8 Q2| | @180 @5,
= |kt — (P B2))] | @A) A

~ XD (U] @20n)) |91 (1] A20) 3}

< Cusexp(y(u)

(log(n+ 1)) (by (5.27})

2an

< Cisp(u)(log(n + 1)),

by (5.21) and (4.14). So we have (5.19) and (5.20).



314 D. S. LUBINSKY

Finally, the degree of R, is k(n){Csa,(log(n+1))*>, which is
O(a,(log(n + 1))?) and hence o(n) by (4.5). |

Proof of Theorem 5.1. In view of Lemma 5.2 (cf. the proof of
Lemma 5.4), it suffices to prove that

ICP WL+ 1(PWY T+ Q117 T108(2 + 101D 72] Lot — g asn]

n
<C1;—IIPW[1+|Q’|]B||Lw(R), Ped, nz1 (5.29)

So let R,e?,, n>=n,, be the polynomials of Lemma 5.5 with 4=0 and
o =4. Then in [ —ay,, 44, ] for Pe Z,,

[P+ 1(PWYIIL+1Q'177
~[IP'W + [(PW)Y]]R,
= |(PR,) W— PR, W|+|(PR,W) — R, PW|
<|(PR,)W|+|(PR,W)|+2|R,| |PW|

2n ,
< C;z— IPR,WI . & [log(2+1Q'1)1* + 2 |R,| |PW],

2

by Lemmas 5.3 and 5.4. Of course if T is bounded, Lemma 5.3 shows that
[log(2 + |Q’])]? can be omitted. Since PR, €%, [22],

”PRn W” Lo(R) ™ ”PRn W” L[ —aon, azn}
~NPW L1110 Lo — g

Then using the bound for R, from Lemma 5.5, we have in [ —ay,, a,,] for
Pe?,

[IP'W]+|(PWY|1[1+]Q'| 1
<CZNPWIL+IQ1T ] Lr iy LloB(2+ QDT

+ C(log(n+ 1)) |PW| [1+ Q1%
Since

n/an>cl(10g(n+ 1))39 n> 13

we have (5.29) and the theorem. |
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6. ESTIMATES FOR CHRISTOFFEL FUNCTIONS,
AND CONSEQUENCES

In this section, we obtain upper and lower bounds for Christoffel
functions, and apply these to spacing of the zeros of the orthogonal
polynomials. The following lemma was proved in a weaker form in [19].

Lemma 6.1. Let We#; and n:=n(W) be as in (2.4). Let

B = (1+n)/(2n). (6.1)
Then 3¢€(0, 1), ny =1 and C, such that if

m:=m(n):=en/T(a,)’, n>n,, (6.2)
we have
2,(W2, x) W‘Z(x)<C%[%+<l "(%,1)2)1/2} (63)
for
nzn; and |x| < - (6.4)

Proof. We adopt the old method of Freud [8]. By Lemma 5.2, for
nz=zn, say,

AW X)W (x)<2 inf J.% (PWY(t) dt)(PW)*(x). (6.5)
PePy_1 Y —ay,
Define for a fixed x the linear polynomial in ¢,
Y.(1) = 0(x) + (1 —x) Q'"(x).
If Q" exists throughout R, we see that by convexity,
V) —0()=—30"(E)1—x)*<0,  teR

As the left-hand side does not involve @7, a continuity argument
establishes this even when Q”(0) does not exist. Hence

exp(y.(2)) W(r) <1, teR. (6.6)
Next, for |f] <ay, and |X| < @y
a4, ,
WO < Qi) +2 = 13y Q' (@)
m(n)

< Cymn) + Colnfm(m))' * Pm(n) T(@pn) "
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(by (4.2), (4.6) and (4.7))
< Csen+ Cye YA+ +1T(g YW+ yT(g )2 =8

= C;nle+¢&" "], (6.7)

by the choice (6.1) of . Here C;# Cs(e, 1, x, t).
Next, as in the proof of Lemma 5.5, let 7,(z) denote the (k + 1)th partial
sum of e* Define

Sx,n(t) = 1'-<n/2>(l//)c(t))'
From (5.28) and (6.7), if ¢ is small enough,

Senlt)~exp(Y (1)), |1l S, X Sapn)-
Then by (6.6),
0<S,.(t) W()<Cy, [t] < Qg 1X] < iy (6.8)
Furthermore,
Sen(x) Wx)~exp(fh(x)) Wix) =1, x| <dpem. (6.9)

Substituting P(¢) := S, ,(t) R(z) in (6.5), where Re Z,,,, , is arbitrary,
yields

A W2, x) W(x)

<2 inf [ (RS, W)A0) dif(RS,, W)(x)

RePipny—1 Y —aun

<C, inf j“" R(1) di/R*(x),

RePupy—1Y —agy
<Cs a4n/1<n/2>(w9 X/a4),

where w is the classical Legendre weight on [ —1, 1]. By classical estimates
[30],

171
A,(w;s)<C67[7+(1 —sz)l/z:l, se[—1,1],1=1.

Hence the result. |}

LEMMA 6.2. Let We#|. For n>1,
Y AW x)(2 4 x3,) T (log(2+ x3,)) P < C. (6.10)
j=1

Proof. See [19, Lemma 6.27. ||
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LemMMmA 6.3, Let We W, and n :=n(W) be as in (2.4). Define p and m{n)
as in (6.1) and (6.2). Then

lxjn|7 |xj+1,n| Sam(n) (611}

: 1/2
‘xj —xj+1yn|gC%(%-{—(l—[mm{lle’ lxj+1,n)}12) ) (612}

A4

implies

Proof. We use the method of Freud [7, pp. 293-2947]. Choose D, EcR
such that

exp(Dx;, + E) Wz(xjn) =1=exp(Dx;,,+ E) Wz(xj+ 1)

jn
By convexity of Q,
exp(Dt+ E) W(t)=exp(Dt+ E—2Q(t)) > 1, telX;y 10 Xl (6.13)

Also then by the Markov—Posse—Stieltjes inequality,

=X 1< exp(Di+E) W) di
Xji+1i.n

< Ay exp(Dxj, + E) + Ay 1, €Xp(Dx; 05, + E)
= ljn Wuz(xjn) + ;Lj+ I,n ‘/Viz(xjnt 1,n>'

Now apply the bounds of Lemma 6.1. §
LemMMA 64. Let We W] and n:=4(W) be as in (2.4). Let
A:=(14+n)n. (6.14)
Let &, be small enough, and let
l:=1(n) :=¢eun/T(a,)?, nx=l (6.15)

Then n, such that for n=n,, p,(x)= p,(W? x) has at least one zero in
o= L, G -

Proof. We use an argument of W. Hahn as adapted by Freud [7].
Suppose on the contrary that p, has no zeros in J,. Let

Y, (x) = Tgn/z>‘ (U4 (ay—x)(x— a)/(44%,)).
Then for xe [ —as,, as,1\J, and n=n,,

0< 1+ (a,—x)(x—a)/(4ad ) <1,
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so 0<y,(x)<1. By Lemma 4.3(ii) and our hypothesis, all zeros lie in
[_aSrn aSn]\Jn for n = ny, SO

Y ()< Y A= j W2(1) dt. (6.16)
Jj=1 j=1 — 0
Also, by the Gauss quadrature formula,

Y aai = W ds| powind  (617)

where K, := [ay3, asy4]. Now for te K,
1+ (a,—t)(t— al/z)/(4a§n) =1+ (a,— 031/4)(‘121/3 - al/Z)/(4a§n)
=1+ Cl(al/Z/aSn)zT(an)72
(by (4.12) and as n=1(n), n=n,)
>1+4+ ngé/(l+f7)T(an)—2A/(1+nJ~2,
(by (4.6) and the definition of /= /(n)). Next, using the inequality
Ty —1(145) 2 3(1+(25)2)2 71 520,
> exp(C; ns'?),
we obtain for 1€ K,,, and by the choice of 4,
¥u(t) Zexp(Cyeg *nT(a,) ).
Furthermore for 1€ K,,, (4.2) yields
W(t) = exp(—Q(asya)) = exp(—Csl)
=exp(— CseonT(a,) ™).
Then for te K,
¥.(2) W2 (1) > exp(nT(a,)*{Csef/* *" — 2Cs¢0})
> exp(Cen(log n) =),
where Cq = Cq(go), if &, is small enough. Then as the length of K, is

Az — A3 = Cr3ys T(asy4) 7" (by (4.12))
= CS(IOg n)~29

n>=ny, (6.17) contradicts (6.16). |
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From Lemmas 6.3 and 6.4, we deduce

THEOREM 6.5. Let We ¥, and |:=In), n=1, be defined by (6.14} to
(6.15). Then dn, and C,>0 such that for n=n,, each interval of length
=2Ca,/n in [ —ay,, ay, ] contains at least one zero of p,.

We now estimate (|Q'(x)] +1)/(1Q"(x)l + 1) in [x;4 s x50 0

LEMMA 6.6. Let We#,. There exist n, and C such that uniformly for
I<j<nandnzn,,

Q'(x) +1

+1
ma. =T <Clog(2+ |Q'(x)N%, (618
xe[xjﬂ,nij_lﬂ { 0'(x,) +1 & (log(2+ Q' (x}1)) (6.18)

J

where we set X, =dg, and X, , | , = —ds,, and 4 is given by (6.14).

Proof. Let [=1I(n) be given by (6.15), n=>1. Let I, :=[x;, 1 ., X;_ 1,1}
If first I,c[—2,2], then (6.18) follows directly. Suppose next
I,c[—a,, —11U[1, a,]. Then

FOGP+17| | 20"() Q1)
log [Q’(xjn)2+ Jl - L,n o1l
<2 = Fenn) | max |QU0/Q()

te [Xj4t,mX— 1,0

<c, max ]I(T(l)—i)/ﬂ

B otelxrimX—tn

aﬂ an
< G372 Tla,) < C; 2 (log n)* = o( 1),

by (49) and (4.5). Here we have also used Theorem 6.5 to bound
X; 1.~ X; 41, f0or n>n,. Together with our considerations about [ —2, 2],
this yields (6.18) for n>n, whenever I, [ —a,, a,].

Next, we note that for n>n,, I, cannot contain the interval [q,,, g,] or
[—a;, —ay,], since

a—ay, = Cha T(a)~! (by (4.12))

2 CS(log n)~2 > Sclan/n5

by (4.9) and (4.5), where C, is as in Theorem 6.5: So [a,,, a,] certainly
contains more than 5 zeros of p, for »n large enough. Thus if 7, is not
contained in [ —a,, a,], then for n=n,, either

Ijn < [al/29 OO) or Ijnc (—CD, _—al/2]'
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Suppose the former. Then since x,, < as, and x,, = ag,,

1Q'(x,,)| < Q'(as,) < Cn(log n)/a,,
by (4.7). Further, for xe I, (4.7) shows that

Jjns

Q' (x) = Q’(al/z) = (1/2)/‘11/2

SO

Q' (x;,)] +1 n ays
< C,~ (1 <
o +1 SCleen

<CyT(a,)*(logn)  (by (6.15))

< Co(logn)' +24,

C;% (log n)

by (4.9). Furthermore, in view of (4.8),
log Q'(x) >log Q'(a;,) > Cyglog I Cy, log n.
So

Q" (x) +1
1Q"(x)| +1

If we reverse the roles of x,, and x, we obtain the same bound for the
reciprocal of the last left hand side. Similarly if I, (—o0, —a,,]. |

< Cpy(log (2+Q'(x))' 2.

By very similar, but easier means, we can prove

LemMma 6.7. Let WeW,. There exist ny and C such that uniformly for
I1<jgsnandnzn,,

max { x| +1 }il <Clog2+ Q)™ (6.19)

xelgetmyorad (X +1
Here x,, :=ag, and x, , , , 1= —ag,.

We remark that at least when 7 is bounded, the powers of
log(2 + |Q’(x)]) can be removed from (6.18) and (6.19). In fact, even when
T is unbounded, only slightly stronger regularity assumptions still allow us
to remove these powers. Next, we bound the Christoffel numbers.

LemMa 6.8. Let We#, and B be given by (6.1). Then for n= 1 and some
C>0,

max A, W2(x,)[1 4+ 10'(e)| 17 [+ x,,l 1~ [log(2 + Q'(x;,))] 24 +#

1<j<n

< Ca,/n. (6.20)
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Proof. From Lemma 6.1, with m = m(n) there
lx jn| < am
implies

Ain

— a,
W 2(xjn) S Cl ;

<G % [1+1Q'(x;) 101 + |, 1log(2 + 10" (x;,) )12+ 72

(6.21)
Next, if |x,,| >a,,, then
10" (x;)| 2 Q'(a,,) = mfa,,  (by (47))
> enT(a,)"/a, (by (6.2))
> Cynf(a,(log n)*), (6.22)

by (4.9). Then
log(2+1Q'(x)1) = C, log
nzn,, and by (4.3),
log(2+|Q'(x;,)|) = C3log(2 + x7,).
Then for such j, Lemma 6.2, and then (6.22), yield

A Wx,) < Ca(2+ X5,) P(log(2 + x3,))°

J

<Cs % 10" (x;)| (Tog(2+1Q"(x;) )2 + x3,)V*(log(2 + x},))?

< C6=2 [141Q/(x;,)| 1[log(2 + 10 (i) DT L1+ Il 1.

Together with (6.21), we have proved (6.20). §

Next, we derive rather weak lower bounds for 4,:

LEMMA 69. Let We W, and o :=c(W). Then

sup 47 (W7, x) W(x)[1+1Q'(x)| ]~ *[log(2+|Q'(x))] > < C, -,

xeR a,,
(
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Proof. From the relation

A (W2, x) = (pil(X) P 1(X) — P 1(X) (X)),

we obtain
sup A, (W2, x) W (x)[1+|Q'(x)|]1~*[log(2 + [Q'(x)|)] 2
<p, 2 IPW— e WIL+1Q117 Tog2+19'D] 2l wy
k=0

X ”Pn—1+kW[1 + ]Ql|]_U”Lw(R)

1
n

<as, ), C2a— I2n— e WILHI1Q1]17°N Loy
(0] n

k=

X Pre 1 4 WILH1Q1] N Loy
(by (4.16) and Theorem 5.1)
<Cl?!n/an’

by (2.9) and (4.6). |

We remark that results in [14, 16] imply better bounds for 1, for
Erdds weights. For Freud weights, without any additional conditions, we
prove the following lemma. The method will be used elsewhere for other
purposes.

LemMa 6.10. Let We ¥, and assume that T is bounded. Then

sup A7 LW, x) W (x) < C, al (6.24)

xeR n

Proof. The bound (6.24) is a straightforward consequence of the
Markov—Bernstein inequalities in [12], as stated in (5.6) above. For any
Pe?,_,, choose £eR such that

(WY = 1PWIl L r)-

Let 0<e<1. Now if | y—¢| <ea,/n, there exists z between ¢ and y such
that

[(PW)(y)l = (PW)(&) + (PW) (z)(y — &)
2 [(PW)E) — (PW)(2)| ea,/n
= || PW| Lo(R) [1—Ce],
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where C is as in (5.6) and C# C(n, P). Choosing ¢ = 1/(2C) yields

((PWYINZ PV )2 |y =&l <ea,/n.
Then for xeR,

7 @wye) ayeewy

&+ ean/n
>[0T IPWIL /4 i (PWY)

& —eay/n
> ea,/(2n).
Thus
I W2 x) W™ (x)=¢ea,/(2n)  forall xeR. §

We now deduce lower bounds for the spacing of the zeros:

LemMa 6.11. Let We, and o:=oc(W). Then uniformly for
2<jgn—1, nzn,,

Xj i Xjy 1,02 C— [1+1Q'(x;u)1 1 *[log(2+1Q"(x;)N1 2% (6.25)
If T is bounded, we have uniformly for 2<j<n—1, n=n,,

x,._l,n—xm,,,;c‘;—". (6.26)

Proof. We use the Markov—Posse—Stieltjes inequality in the form given
in [11, p.89, Lemma 3.27. Suppose first x;,,,>0 and G is the entire
function of Lemma 3.2 above. Setting x,, := oo, we have by [11, p. 897,

1
=3 T Gw)= T Gl |

ki |xpnl < Xxj—1,n k2 ] < Xjn

U o —j }G(z Y W(1) dt

—Xj—1n —Xj+1,n

_f " G(1) W(1) dt

Xj+Ln

By Lemma 3.2 above, we obtain

xjgls”_ J+1">C l w- (]71)
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Then (6.25) and (6.26) follow respectively from the bounds of Lemma 6.9
and 6.10. By symmetry, the same inequality holds if x;,_, ,<0.

Finally, suppose x;,,,<0and x; ,,>0. Then in v1ew of Theorem 6.5,
for n=n,, both are contained in [ —1, 1]. By the classical Markov-Stieltjes
inequality,

e
gj t)dt<C3( Xi_in xj+1,n)'

Xji+1ln

Applying Lemmas 6.9 and 6.10 again, and the fact that W~?2 is bounded in
[—1, 1], we obtain (6.25) and (6.26) for all 2<j<n—1. |

7. PROOFS OF THE THEOREMS

In this section, we prove slight improvements of Theorem 2.3 and its
corollaries.

Lemma 7.1. Let We W, and 0 :=a(W). Let f: R — R satisfy

Ay =sup |f(x)] W21+ [Q' () 151+ |x[) <0,  (7.1)

xeR

Jfor some £>0. Let

Z:: W, <Pn(X)>2’ (72)

X = X},

mI:N

nzl, xeR. Then for xeR and n>1,
IYn( Wz’f; X)| SCAlvn(x)a (73)
where C# C(n, f, x) but C=C(W,¢).

Proof. First note that from the representation (1.27), and from (2.9),
(4.16), and (4.6), for xeR, n>1, and 1 <j<n,

pn(x)

] < Cu 2@ ()T +1Q G 17| 2222 1.4
Then
YL £01< B 11l B0)
<Cla, ¥ W) () (1+1Q sl P (222,

(1.5)
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Now by Lemma 6.8 and (7.1),
A L Ce)l L1410 (x)1 1%
<C2 “ 1 f ()| W)+ Q" () 177
X [1+ [x;,] 1[Tog(2 + Q" (x,,)1 20 7
<G4,
n

Lubstituting into (7.5} yields (7.3). |

Next, we estimate a term that enables us to compare H,, H,, and H*
to Y,:

LEMMA 7.2. Let WeW; and o :=o(W). Let {e,,};, satisfy

Byi= sup el W20x,)(1+10'(x;))* 21+ Ix,0) < o0, (7.6)

1<j<n
nxzl

some 6>0. Then for xeR and n>1,
(1+1Q'x)H~° Z el 1% — X, 15(x) W(x)

< CB, <; vn(x)>l/2, (7.7}

where C# C(n, {e,,}, x) but C=C(W,d) and where v,(x) is defined by
(7.2).

Proof. By the Cauchy-Schwarz inequality,
4z%|em|lx_—xﬂ|l;(x)
ie

i 12 12
<< 2 legl (x—xjn)zljf,(x)) (Z le| 15(x) > . (7.8)
=1
If we define f,: R—> R by
JalX5) 1= lel, 1<j<nandn>1,

and f,(x)=0 otherwise, then the exact argument of the previous lemma
shows that
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Z |12(x)_ n(W2 fna )
j=1

SCi{ sup el W20 )1+ 1Q o)1 21+ [xl)} v,

1<j<n
nzl

< Cl Bl vn(x)’ (79)
where C, # C,(n, {e;,}, x). Furthermore, by (2.9),

E leul (x —x;,)* 15,(x) W?(x)
j=1
:pi(Pn W)z(x) Z lejnl '1]%,,]7,21_1(3%1)

<SGATIQENZ S lep 21+ 10 ()W ()

j=t

(by (2.9), (4.16) and (4.6))

S CG(1+1Q' () =

X Z 'ejn' A‘jn(l + ,Q,(xjn)')20+1
(1+| - )(10g(2 + Q' (x,,)))* +F
(by Lemma 6.8)
S C(L+1Q'(x))* "B Z AW 2(x5,)
X (1+1Q'(x))~ ‘”2(1+|xfnl) !
(for n=n, and by (7.6))
<CS(1+1Q )7 2By, (7.10)
by Lemma 6.2, and since for some «>0 and n>n,,
(1 +1Q'(x;))”? = Co(1 + [x;,])* = C(log(2 + x3,))%

by (4.3). Substituting (7.9) and (7.10) into (7.8) yields the lemma. ||
With the aid of Lemma 7.2, we shall prove:

LeMMA 7.3. Let We W, and o :=0o(W). Let f: R — R, and assume that
A, defined by (2.13), is finite for some ¢>0.
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{a) Then for xeRand n>1,
YW, f, x) = H(W?, £, x)] W)(L+1Q'(x)])~°

<C, 4 [ ,,(x)Jl/z. (7.11)

(b) Suppose that {d,},, satisfy for some 6>0, that B of (2.18) is
finite. Then for xeR and n= 1,

| YAW2, f, %)= HXW?, £, {d), }, ) W)[L+1Q'(x)117°
< C,[A+ B] [~ v,,(x)]m. (7.12)

(¢c) If /' exists in R and D, defined by (2.20), is finite, then for xe R
andnzl,

| Y2, £, %)= H (W2, f, x)| W[ +1Q°(x)| 177

a 1/2
<Cy[A+D] [; vn(x)] . (7.13)
The constants C, C,, C; are independent of n, f, x, and {d,,} but depend on
&0, and W.
Proof. (a) From (1.7), (1.9), and (1.14), we see that
Pn(Xn)
PulX;n)

<Gy i L Ge)l T+ 1970l T [x = x50 15,0,

Y02 )~ BV ) = (=) 3(3)

by (4.18). Applying Lemma 7.2 with
=1/ [L+1Q' ()] Vyn

yields (7.11).
(b) Now by (1.9) and (1.12),

| Yu(W2, f, %) — HEW?, £, {d)}, x)|
len(Wznf;x)_Hn(Wzaf;x)!+ Z Z_,vn(x)
Applying (a) and Lemma 7.2 with e, :=d,, V¥ j, n, yields (7.12).

(c) By applying (b) to the special case d,, = f'(x;,), we immediately
obtain (7.13). |

640/70/3-5
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It remains to estimate v,(x) before proving the boundedness and
convergence results.

THEOREM 7.4. Let We W, and 6 :=a(W). Let v,(x) be defined by (7.2).
Then for xeR and n> 1,

v,(x) W (x) < C,[1+|Q'(x)| T+ L4l [ 1+ |x| ] [log(2 + |Q'(x)) 17,
(7.14)

where C,, C, are independent of n and x. If T is bounded, we may replace
max{2¢+1,40} by 20+ 1.

Proof. Because of the symmetry of the zeros of p,, it is not difficult to
see from (7.2) that v, is even. So we treat only x € [0, o0 ). Set xg, := o0 and
choose k£ =0 such that

Xiyln SX < Xpy-
By (3.6) of Theorem 3.1, at least if k >4,
Z AjnW_z(xjn) |x—xjn|¥2<C3(xkA2,n—x)—l'

Filxjnl 2 XK -3,
Of course if k£ < 3, this sum is taken as 0. Now by Lemma 6.11,

Xp_on—XZXg_2,— X

=C, % [1+1Q" (1,1 17> [log(2 + Q" (xx 1)1 )12

a" ’ —20 12 —
>Cs—- [1+]Q'(x)[] *Tlog(2+1Q'(x)1)1~,
by two applications of Lemma 6.6. If T is bounded, we may omit the
factors involving Q’(x). Next, by (3.5) of Theorem 3.1, at least if x, , , , >0,

Z )'jn W_Z(xjn) lx_xjn[_2<CG(x_xk+3,n)_l'

Jo|Xjml € Xk an
If x; . 4, <0, this sum is taken as 0. Now by Lemma 6.11,

X=X 1302 Xpt10~ Xit3,n

=G % (1410 (xk 4 2.)1 1> [log(2 +1Q"(xic 1 2,,))] 2

=G, %’1 [1+1Q'(x)I11 > [log(2+1Q"(x))]1 7%

as x>Xxj4,,20. If Tis bounded, we may omit the factors involving Q’.
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Using our bound (2.9} yields

2 hY
R R D WD M P e T

J: |xjn| K Xk +4,n J: |Xjni Z Xk ~3,n

< Co(1+1Q'(x))* [log(2 +10'(x)1) 1<, (7.15)

for xe R and »n > 1. Fither sum is omitted, if empty. If 7 is bounded, we
may replace 40 by 20. It remains to estimate

a (P, W2\
Z :=_" Z j"nI/I/Z(x‘n)( . >
' n JiXki3n < Xl S xp—2,n ’ ’ XXX
2 min{k+3,n} 1774 2
<2 Y LWy (Qf—};@> . (7.16)
n . X

j=max{k—-2,1} ™ Xjn
Now by Lemma 6.8, for max{k—2, 1} <j<min{k—3, n},
a, , ,
I W25 < Cro S [1+1Q'(35,) 101 + Ll 1[log(2 + 10/ (x,) )T+

<Cy % [1+10' ()01 + Ix[1[log2 + Q' ()12 (7.17)

by Lemmas 6.6 and 6.7 at least if x<ag,. If x> a,,, we can use the fact
that Q'(-) is increasing in (0, o). If, first, x < a,,, there exists & between x
and x;, such that

| palx) W(x)/(x = x;,)]
=i W) (<)

< C135_ [log(2+ Q" (DI +1Q' N7 2 WL+ Q1T %l )

(by Theorem 5.1)

<Cy % [1+1Q'(x)I17[log(2+1Q"(x)1) 1", (7.18)

by (2.9) and a fixed number of applications of Lemma 6.6. On the other
hand if x = a,,

P, W)/ (x — x;,)| < Ciga, (1 + Q" () /ag, — as,)
(by (2.9) and (4.17))

< Cpa, (1+]0'(x)]) (log n)?,
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by (4.13) and (4.14). Hence (7.18) remains true. Substituting (7.17) and
(7.18) into (7.16) yields

2 SC[1+]1Q)T* 1+ |x] 1[log(2 + Q' (x))] .
Combined with (7.15), this yields (7.14). |

We can now prove:

THEOREM 7.5. Let We W, and 6 =a(W). Let f: R - R and assume that
A, defined by (71.1) is finite. Let x and V be given by (2.14a, b) and (2.15),
respectively. Then for n> 1,

” Yn(Wzaf; ) W2V||Lw(R)<CA1’ (719)
where C# C(n, f).
Proof. This follows directly from Lemma 7.1 and Theorem 7.4. |

THEOREM 7.6. Let We W, and a =o(W). Let f: R - R and assume that
A defined by (2.13) is finite. If T is unbounded, let

Kk, >max{2c +1, 35}, (7.20a)
and if T is bounded, let
K >20+1. (7.20b)
Furthermore, let
Vix):=[14+1Q'(x)|1 ™[1+|x|]17"3 xeR (7.21)

(a) Then
I(YoAW?, £ )= Ho W, £, ) Wil Ly S CrAla,/n) 2 (1.22)
(b) Assume that B and {d,,},, satisfy (2.18) for some 6>0. Then

Y AW2 1, )= HXW?, £, {dy}, ) WVl L) < Co[A4 + Bl(a,/n)'.
(7.23)

(c) Assume that f' exists in R, and D defined by (2.20), is finite. Then
WY AW £ )= H (W2 1) W2Vl my < Cs[4+ D1(a,/n) 2 (7.24)

Here Cy, C,, C, are independent of n and f.
Proof. This follows directly from Lemma 7.3 and Theorem 7.4. |
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Proof of Theorem 2.3. (a) From (2.13) and (7.1),
A, <A
Then (7.19) in Theorem 7.5 yields (2.16).
(b) From (2.14a, b), (2.15) and (7.20a, b}, (7.21), we see that

V< Vl:

provided x; is chosen so close to its lower bound that x, <x. Then
Theorem 7.6(a), (b), (c) yield respectively Theorem 2.3(b), (c), (d). §

To deduce convergence of the operators from Theorem 2.3, we prove
convergence on the polynomials:

TueoREM 7.7. Let We W, and 6 =o(W). Let «, be given by (7.20a,b)
and V, by (7.21). Let ¢ >0. Then for n=1 and R, e, _ 1,

I(HL (W2, R,y ) = Ro(-)) W2Vl 1wy

172
< C<£1n£> sup {|R,(0)] W*()[1+ Q' (O (1 + 147},
(7.25)
where C+# C(n, R,,).
Proof. Now by [28, p. 44],
Hn(W2= Rn> x) - Rn(x) =

== Y Ry, (6= x;) B(x).
=1
Applying Lemma 7.2 yields, for xe R,

(+1Q' ()~ HW?, R, x) = R,(x)| W(x)

1/2
<€ (%)) sup (IR WAOLL+1Q T T+ 117}

reR

Then Theorem 7.4 yields the result. J

Proof of Corollary 2.4. Since V<V, with a suitable choice of «,,
Theorem 7.7 and (4.5) yield

lim [(H,(W2, R, )= RC) WPV =0,
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V polynomial R. Then for any such polynomial, Theorem 2.3(b) ensures
that

Hm [[(Y,(W? R, )= R(-)) WVl ) =0.

h— o0

In view of the fact that we can find a polynomial R such that for a given
>0,

sup |f —R| (x) W2()[1+1Q'(x)| 1727 [1+ |x|]* <«

xeR

(cf. [5, p. 180]), then by Theorem 2.3(a),

YA L) = ) WPy
= [{Y (W =R )= (f = R)()+ Y, (W, R, )= R()} WL
< Cysup |f— Rl (x) Wx)[1+1Q'(x)[ 1% *2*°[1 + |x|1*

xeR

+I(f =Ry W +o(1)
< Cysup |f— Rl (x) Wx)[1+1Q'(x)| 1%+ *[1+ |x|1* + o(1)

xeR

< Cya+0(1),

since ¥ < 1. Hence (2.22). The equiconvergence results of Theorem 2.3 then
imply convergence of {H,}, {H}}, and {H,}. |

Proof of Corollary 2.5. By (1.20),

I, Lk; f1—ITk; f]]

[ w2, 20— 1) kx) ax

<UL )= FO) WV oy | IKCOI T 20) V) dx

Now apply Corollary 2.4. The remaining results are similar. |
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Note added in proof. The bound (2.11) has been proved for a class of weights. including
exp(—{x]*), > 1. This is contained in “Christoffel Functions, Orthogonal Polynomials, and
Nevai’s Conjecture for Freud Weights,” by A. L. Levin and the author, to appear in Constructive
Approximation.
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