Hermite and Hermite-Fejér Interpolation and Associated Product Integration Rules on the Real Line: The L_{∞} Theory

D. S. Lubinsky
Department of Mathematics, University of the Witwatersrand, P. O. Wits 2050, Republic of South Africa
Communicated by Paul Nevai

Received April 26, 1991

We investigate convergence in a weighted L_{∞}-norm of Hermite-Fejér and Hermite interpolation and related approximation processes, when the interpolation points are zeros of orthogonal polynomials associated with weights $W^{2}=e^{-2 \theta}$ on the real line. For example, if $H_{n}\left(W^{2}, f, x\right)$ denotes the nth Hermite-Fejér interpolation polynomial for $W^{2}=e^{-2 Q}$ and the function f, then we show that

$$
\lim _{n \rightarrow \infty}\left\{\sup _{x \in \mathbb{R}}\left|H_{n}\left(W^{2}, f, x\right)-f(x)\right| W^{2}(x)\left[1+\left|Q^{\prime}(x)\right|\right]^{-x}(1+|x|)^{-1}\right\}=0,
$$

under suitable conditions on f, W^{2}, and κ. The weights to which the results are applicable include $W^{2}(x)=\exp \left(-|x|^{\alpha}\right), \alpha>1$, or $W^{2}(x)=\exp \left(-\exp _{k}\left(|x|^{\alpha}\right)\right)$, $\alpha>1, k \geqslant 1$, where $\exp _{k}$ denotes the k th iterated exponential. Convergence of product integration rules induced by the various approximation processes is then deduced. Essentially the conclusion of the paper is that by damping the error in approximation of f by Hermite-Fejér or Hermite interpolation by a factor $\left[1+\left|Q^{\prime}(x)\right|\right]^{-\kappa}(1+|x|)^{-1}$, which decays much more slowly than the weight W^{2}, we can ensure sup-norm convergence under quite general conditions. © 1992 Academic Press, Inc.

1. Introduction

Let $W:=e^{-Q}$, where $Q: \mathbb{R} \rightarrow \mathbb{R}$ is even, continuous, and of at least polynomial growth at infinity. Let \mathscr{P}_{n} denote the set of real polynomials of degree $\leqslant n$. Form the nth orthonormal polynomial for W^{2},

$$
\begin{equation*}
p_{n}(x):=p_{n}\left(W^{2} ; x\right):=\gamma_{n} x^{n}+\cdots \in \mathscr{P}_{n}, \quad \gamma_{n}=\gamma_{n}\left(W^{2}\right)>0, \tag{1.1}
\end{equation*}
$$

$n=1,2,3, \ldots$, satisfying

$$
\begin{equation*}
\int_{-\infty}^{\infty} p_{n}(x) p_{m}(x) W^{2}(x) d x=\delta_{m n} . \tag{1.2}
\end{equation*}
$$

Let us order the zeros $x_{j n}=x_{j n}\left(W^{2}\right)$ of $p_{n}(x)$ so that

$$
\begin{equation*}
-\infty<x_{n n}<x_{n-1, n}<\cdots<x_{1 n}<\infty \tag{1.3}
\end{equation*}
$$

We omit the W^{2} from $x_{j n}$ or $p_{n}(x)$ (and so on) unless confusion can arise.
In this paper, we study the convergence in a weighted L_{∞} norm of Hermite-Fejér and Hermite interpolation, and other approximation processes, when $\left\{x_{j n}\right\}_{j=1}^{n}$ are chosen as the interpolation points. Recall that if $f: \mathbb{R} \rightarrow \mathbb{R}$, then the nth Hermite-Fejer interpolation polynomial is $H_{n}\left(W^{2}, f, \cdot\right) \in \mathscr{P}_{2 n-1}$ satisfying

$$
\begin{align*}
& H_{n}\left(W^{2}, f, x_{j n}\right)=f\left(x_{j n}\right) \tag{1.4}\\
& H_{n}^{\prime}\left(W^{2}, f, x_{j n}\right)=0
\end{align*}
$$

$1 \leqslant j \leqslant n$. The type of result we show is

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{\sup _{x \in \mathbb{R}}\left|H_{n}\left(W^{2}, f, x\right)-f(x)\right| W^{2}(x)\left[1+\left|Q^{\prime}(x)\right|\right]^{-\kappa}(1+|x|)^{-1}\right\}=0 \tag{1.5}
\end{equation*}
$$

under suitable conditions on f, W^{2}, and κ, including a bound on the orthonormal polynomials. Here the damping factor $\left[1+\left|Q^{\prime}(x)\right|\right]^{-\kappa}$ $(1+|x|)^{-1}$ decays very slowly relative to the weight W^{2}.

The corresponding convergence question was treated in an L_{1}-setting in an earlier paper [19]. A brief survey of the topic was given there, so is omitted here.

To introduce the Hermite interpolation operator, and related approximation processes, we need more notation. Let $l_{j n} \in \mathscr{P}_{n-1}, 1 \leqslant j \leqslant n$, be the fundamental polynomials of Lagrange interpolation, satisfying

$$
\begin{equation*}
l_{j n}\left(x_{k n}\right)=\delta_{j k}, \quad 1 \leqslant j, k \leqslant n . \tag{1.6}
\end{equation*}
$$

The fundamental polynomials of Hermite interpolation are then

$$
\begin{equation*}
h_{j n}(x):=\left\{1-\frac{p_{n}^{\prime \prime}\left(x_{j n}\right)}{p_{n}^{\prime}\left(x_{j n}\right)}\left(x-x_{j n}\right)\right\} l_{j n}^{2}(x), \quad 1 \leqslant j \leqslant n \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{h}_{j n}(x):=\left(x-x_{j n}\right) l_{j n}^{2}(x), \quad 1 \leqslant j \leqslant n . \tag{1.8}
\end{equation*}
$$

$H_{n}\left(W^{2}, f, x\right)$ admits the representation

$$
\begin{equation*}
H_{n}\left(W^{2}, f, x\right)=\sum_{j=1}^{n} f\left(x_{j n}\right) h_{j n}(x) \tag{1.9}
\end{equation*}
$$

If $f^{\prime}\left(x_{j n}\right)$ exists, $1 \leqslant j \leqslant n$, then the Hermite (or osculatory) interpolation polynomial is

$$
\begin{equation*}
\hat{H}_{n}\left(W^{2}, f, x\right):=\sum_{j=1}^{n} f\left(x_{j n}\right) h_{j n}(x)+\sum_{j=1}^{n} f^{\prime}\left(x_{j n}\right) \hat{h}_{j n}(x) \tag{1.10}
\end{equation*}
$$

It is characterized by the interpolatory conditions

$$
\begin{equation*}
\hat{H}_{n}^{(k)}\left(W^{2}, f, x_{j n}\right)=f^{(k)}\left(x_{j n}\right), \quad k=0,1 ; 1 \leqslant j \leqslant n \tag{1.11}
\end{equation*}
$$

and by the condition $\hat{H}_{n}\left(W^{2}, f, \cdot\right) \in \mathscr{P}_{2 n-1}$.
Both H_{n} and \hat{H}_{n} are special cases of the operator

$$
\begin{equation*}
H_{n}^{*}\left(W^{2}, f,\left\{d_{l n}\right\}, x\right):=\sum_{j=1}^{n} f\left(x_{j n}\right) h_{j n}(x)+\sum_{j=1}^{n} d_{j n} \hat{h}_{j n}(x) \tag{1.12}
\end{equation*}
$$

satisfying

$$
\begin{align*}
& H_{n}^{*}\left(W^{2}, f,\left\{d_{l n}\right\}, x_{j n}\right)=f\left(x_{j n}\right) \\
& H_{n}^{* \prime}\left(W^{2}, f,\left\{d_{l n}\right\}, x_{j n}\right)=d_{j n} \tag{1.13}
\end{align*}
$$

$1 \leqslant j \leqslant n$.
In several classical cases [28] and in those treated in this paper, the contribution to $h_{j n}(x)$ from $\left\{p_{n}^{\prime \prime}\left(x_{j n}\right) / p_{n}^{\prime}\left(x_{j n}\right)\left(x-x_{j n}\right)\right\} l_{j n}^{2}(x)$, is negligible. It is then natural to introduce, as did Grünwald [9], the very simple positive operator

$$
\begin{equation*}
Y_{n}\left(W^{2}, f, x\right):=\sum_{j=1}^{n} f\left(x_{j n}\right) l_{j n}^{2}(x) \tag{1.14}
\end{equation*}
$$

Each of the approximation processes above generates a product quadrature rule, involving approximation of

$$
\begin{equation*}
I[k ; f]:=\int_{-\infty}^{\infty} k(x) f(x) d x \tag{1.15}
\end{equation*}
$$

Here the kernel k is typically the "difficult" component of the integrand $k f$, with known types of singularity or oscillatory behaviour. The component f typically has "smooth" behaviour. The idea of the product quadrature rule is to approximate $I[k ; f]$ by

$$
\begin{align*}
I_{n}[k ; f] & :=\int_{-\infty}^{\infty} k(x) H_{n}\left(W^{2}, f, x\right) d x \tag{1.16}\\
& =\sum_{j=1}^{n} f\left(x_{j n}\right)\left(\int_{-\infty}^{\infty} k(x) h_{j n}(x) d x\right) \tag{1.17}
\end{align*}
$$

Analogous rules are generated by \hat{H}_{n}, H_{n}^{*}, and S_{n} : We use the notation

$$
\begin{align*}
& \hat{I}_{n}[k ; f]:=\int_{-\infty}^{\infty} k(x) \hat{H}_{n}\left(W^{2}, f, x\right) d x \tag{1.18}\\
& I_{n}^{*}[k ; f]:=\int_{-\infty}^{\infty} k(x) H_{n}^{*}\left(W^{2}, f,\left\{d_{l n}\right\}, x\right) d x \tag{1.19}
\end{align*}
$$

and

$$
\begin{equation*}
J_{n}[k ; f]:=\int_{-\infty}^{\infty} k(x) Y_{n}\left(W^{2}, f, x\right) d x \tag{1.20}
\end{equation*}
$$

For a discussion of these rules, see $[4,19]$. Under mild conditions on f and k, we shall prove, for example, that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{n}[k ; f]=I[k ; f] . \tag{1.21}
\end{equation*}
$$

The paper is organized as follows: In Section 2, we introduce our class of weights, and state the main results. In Section 3, we estimate certain quadrature sums, using Markov-Posse-Stieltjes inequalities. That section can be read independently, and is possibly of independent interest. In Section 4, we present some technical estimates, mostly proved elsewhere. In Section 5, we establish some Markov-Bernstein inequalities, and in Section 6, we obtain Christoffel function estimates and deduce spacing results for $\left\{x_{j n}\right\}$. Finally, in Section 7, we prove the results of Section 2.

We close this section by introducing additional notation. Throughout, C, C_{1}, C_{2}, \ldots, denote positive constants independent of n, x, and $P \in \mathscr{P}_{n}$. The same symbol does not necessarily denote the same constant in different occurrences. We write $C=C(W)$ to denote (for example) dependence on W and $C \neq C(n, x)$ to emphasise that C is independent of n and x.

We use \sim in the following sense: If $\left\{c_{n}\right\}_{n=1}^{\infty}$ and $\left\{d_{n}\right\}_{n=1}^{\infty}$ are sequences, then

$$
c_{n} \sim d_{n}
$$

means that

$$
C_{1} \leqslant c_{n} / d_{n} \leqslant C_{2}, \quad n \geqslant 1 .
$$

Similar notation is used for functions and sequences of functions. For real $x,\langle x\rangle$ denotes the greatest integer $\leqslant x$. Let $\mathscr{S} \subset \mathbb{R}$. A function $f: \mathscr{S} \rightarrow(0, \infty)$ is said to have increasing tendency if

$$
x, y \in \mathscr{S} \quad \text { and } \quad x \leqslant y \text { implies } f(x) \leqslant C f(y) .
$$

Finally, some further notation involving orthogonal polynomials: Let $W=e^{-Q}$ as above. The nth Christoffel function is [25]

$$
\begin{align*}
\lambda_{n}\left(W^{2}, x\right) & :=\inf _{P \in \mathscr{P}_{n-1}} \int_{-\infty}^{\infty}(P W)^{2}(t) d t / P^{2}(x) \tag{1.22}\\
& =1 / \sum_{j=0}^{n-1} p_{j}^{2}\left(W^{2} ; x\right) . \tag{1.23}
\end{align*}
$$

The Christoffel numbers are

$$
\begin{equation*}
\lambda_{j n}=\lambda_{n}\left(W^{2}, x_{j n}\right), \quad 1 \leqslant j \leqslant n \tag{1.24}
\end{equation*}
$$

appearing in the Gauss quadrature formula

$$
\begin{equation*}
\int_{-\infty}^{\infty} P(x) W^{2}(x) d x=\sum_{j=1}^{n} \lambda_{j n} P\left(x_{j n}\right), \quad P \in \mathscr{P}_{2 n-1} . \tag{1.25}
\end{equation*}
$$

If we set

$$
\begin{equation*}
\rho_{n}:=\rho_{n}\left(W^{2}\right):=\gamma_{n-1}\left(W^{2}\right) / \gamma_{n}\left(W^{2}\right), \quad n \geqslant 1, \tag{1.26}
\end{equation*}
$$

then $l_{j n}$ admits the representation [25]

$$
\begin{equation*}
l_{j n}(x)=\lambda_{j n} \rho_{n} p_{n-1}\left(x_{j n}\right) p_{n}(x) /\left(x-x_{j n}\right), \quad 1 \leqslant j \leqslant n . \tag{1.27}
\end{equation*}
$$

2. Main Results

In our recent paper on convergence of Hermite-Fejér interpolation in the L_{1}-setting, we treated weights $W^{2}=e^{-2 Q}$, where Q is of polynomial, or of faster than polynomial growth at infinity. These are called respectively the Freud and Erdös cases. Here we also handle simultaneously Freud and Erdös weights, but have to assume slightly different hypotheses in the two cases:

Definition 2.1. We write $W \in \mathscr{W}_{1}$ if
(a) $W=e^{-Q}$, where $Q: \mathbb{R} \rightarrow \mathbb{R}$ is even, continuously differentiable, $Q^{\prime \prime}$ exists in $(0, \infty)$, and

$$
\begin{equation*}
Q(0)=0 . \tag{2.1}
\end{equation*}
$$

(b) For $x \in(0, \infty)$,

$$
\begin{equation*}
Q^{\prime}(x)>0 \quad \text { and } \quad Q^{\prime \prime}(x) \geqslant 0 \tag{2.2}
\end{equation*}
$$

(c) For $x \in(0, \infty)$, let

$$
\begin{equation*}
T(x):=\left(x Q^{\prime}(x)\right)^{\prime} / Q^{\prime}(x)=1+x Q^{\prime \prime}(x) / Q^{\prime}(x) . \tag{2.3}
\end{equation*}
$$

Assume that for some $\eta>0$,

$$
\begin{equation*}
T(x) \geqslant 1+\eta, \quad x \in(0, \infty) \tag{2.4}
\end{equation*}
$$

Assume further that either
(i) T is bounded in $(0, \infty)$,
or
(ii) T is unbounded and increasing in $(0, \infty)$, satisfying there

$$
\begin{equation*}
T(x) \leqslant C\left[\log \left(2+Q^{\prime}(x)\right)\right]^{2} \tag{2.5}
\end{equation*}
$$

The above conditions are slightly more restrictive than those in [19]. While (i) guarantees that Q is of polynomial growth at infinity, (ii) forces Q to be of faster than polynomial growth at infinity. In the latter case, (2.5) is a rather weak regularity condition: Under very general conditions on Q, it is satisfied for "most" x.

As examples of Q for which $W=e^{-Q} \in \mathscr{W}_{1}$, we mention

$$
\begin{equation*}
Q(x):=|x|^{\beta}, \quad \beta>1 \tag{2.6}
\end{equation*}
$$

(this satisfies (i)) and

$$
\begin{equation*}
Q(x):=\exp _{k}\left(|x|^{\beta}\right)-\exp _{k}(0), \quad \beta>1, k \geqslant 1 \tag{2.7}
\end{equation*}
$$

where $\exp _{k}:=\exp (\exp (\ldots \exp () \ldots))$ denotes the k th iterated exponential (this satisfies (ii)).

We also need to assume a bound on the orthonormal polynomials, and to this end, must define the Mhaskar-Rahmanov-Saff number $a_{u}=a_{u}(Q)$, $u>0$. This is the positive root of the equation

$$
\begin{equation*}
u=\frac{2}{\pi} \int_{0}^{1} \frac{a_{u} t Q^{\prime}\left(a_{u} t\right)}{\left(1-t^{2}\right)^{1 / 2}} d t, \quad u>0 \tag{2.8}
\end{equation*}
$$

Since $s Q^{\prime}(s)$ is positive and increasing for $s \in(0, \infty)$, with limits 0 and ∞ at 0 and ∞ respectively, a_{u} is uniquely defined. Moreover, a_{u} is increasing for $u \in(0, \infty)$, with limits 0 and ∞ at 0 and ∞ respectively. The significance of a_{u} is explored in $[20,22,23]$.

Definition 2.2. Let $W:=e^{-Q} \in \mathscr{W}_{1}$. We write $W \in \mathscr{W}_{2}$, if there exists $\sigma:=\sigma(W)>0$, such that for $n \geqslant 1$,

$$
\begin{equation*}
\left\|p_{n} W\left[1+\left|Q^{\prime}\right|\right]^{-\sigma}\right\|_{L_{\infty}(\mathbb{R})} \leqslant C a_{n}^{-1 / 2} \tag{2.9}
\end{equation*}
$$

We remark that $\sigma=\sigma(W)>0$ exists, when, for example, Q is given by (2.6) with $\beta>1$, or by (2.7). This follows from asymptotics given for $p_{n}\left(W^{2} ; x\right)$ in $[14,29]$. For these Q, and for all those Q for which $W=e^{-Q} \in \mathscr{W}_{1}$ and for which orthogonal polynomial asymptotics were given in [14], one can choose any

$$
\begin{equation*}
\sigma \geqslant \frac{1}{2}\left(1+\frac{1}{\eta}\right) \tag{2.10}
\end{equation*}
$$

where η is as in (2.4). This follows from the bounds in [14] and Nikolskii inequalities in $[24,27]$, and from the bound (4.5) below.

For the case where Q, is given by (2.6), with β a positive even integer, Bonan and Clark [2] showed that

$$
\begin{equation*}
\left\|p_{n}^{2} W^{2}\right\|_{L_{\infty}(\mathbb{R})} \leqslant \mathrm{C} n^{1 / 3-1 / \beta}, \quad n \geqslant 1 . \tag{2.11}
\end{equation*}
$$

This bound implies that in this case we can choose

$$
\begin{equation*}
\sigma \geqslant \frac{1}{6} \beta /(\beta-1) \quad\left(\leqslant \frac{1}{3}\right) \tag{2.12}
\end{equation*}
$$

Results of Bauldry [1] imply (2.11), and so allow (2.12), for more general weights.

While the assumption (2.9) does not yield the sharpest possible results, it allows tractable and close to sharp results, for all the weights for which orthogonal polynomial asymptotics were given in [14].

Following is our main theorem, establishing boundedness in weighted sup-norms, of $\left\{H_{n}\right\},\left\{\hat{H}_{n}\right\},\left\{Y_{n}\right\}$, and $\left\{H_{n}^{*}\right\}$:

Theorem 2.3. Let $W \in \mathscr{W}_{2}$ and $\sigma=\sigma(W)$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy, for some $\varepsilon>0$,

$$
\begin{equation*}
A:=\sup _{x \in \mathbb{R}}|f(x)| W^{2}(x)\left[1+\left|Q^{\prime}(x)\right|\right]^{2 \sigma+2+\varepsilon}(1+|x|)^{2}<\infty . \tag{2.13}
\end{equation*}
$$

If T is bounded, let

$$
\begin{equation*}
\kappa>2 \sigma+1 \tag{2.14a}
\end{equation*}
$$

and if T is unbounded, let

$$
\begin{equation*}
\kappa>\max \{2 \sigma+1,4 \sigma\} . \tag{2.14b}
\end{equation*}
$$

Furthermore, let

$$
\begin{equation*}
V(x):=\left[1+\left|Q^{\prime}(x)\right|\right]^{-\kappa}(1+|x|)^{-1}, \quad x \in \mathbb{R} \tag{2.15}
\end{equation*}
$$

(a) Then for $n \geqslant 1$,

$$
\begin{equation*}
\left\|Y_{n}\left(W^{2}, f, \cdot\right) W^{2} V\right\|_{L_{\infty}(\mathbb{R})} \leqslant C_{1} A \tag{2.16}
\end{equation*}
$$

where $C_{1} \neq C_{1}(n, f)$.
(b) Further for $n \geqslant 1$,

$$
\begin{equation*}
\left\|\left(Y_{n}\left(W^{2}, f, \cdot\right)-H_{n}\left(W^{2}, f, \cdot\right)\right) W^{2} V\right\|_{L_{\infty}(\mathbb{B})} \leqslant C_{2}\left(\frac{a_{n}}{n}\right)^{1 / 2} A=o(1) \tag{2.17}
\end{equation*}
$$

where $C_{2} \neq C_{2}(n, f)$.
(c) Suppose that $\left\{d_{j n}\right\}_{j, n}$ satisfy, for some $\delta>0$,

$$
\begin{equation*}
B:=\sup _{\substack{n \geqslant 1 \\ 1 \leqslant j \leqslant n}}\left|d_{j n}\right| W^{2}\left(x_{j n}\right)\left[1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right]^{2 \sigma+1+\delta}\left(1+\left|x_{j n}\right|\right)^{2}<\infty \tag{2.18}
\end{equation*}
$$

Then for $n \geqslant 1$,

$$
\begin{align*}
& \left\|\left(Y_{n}\left(W^{2}, f, \cdot\right)-H_{n}^{*}\left(W^{2}, f,\left\{d_{l n}\right\}, \cdot\right)\right) W^{2} V\right\|_{L_{\infty}(\mathbb{R})} \\
& \quad \leqslant C_{3}\left(\frac{a_{n}}{n}\right)^{1 / 2}[A+B]=o(1), \tag{2.19}
\end{align*}
$$

where $C_{3} \neq C_{3}\left(n, f,\left\{d_{l n}\right\}\right)$.
(d) Suppose that f^{\prime} exists in \mathbb{R}, and for some $\delta>0$,

$$
\begin{equation*}
D:=\sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right| W^{2}(x)\left[1+\left|Q^{\prime}(x)\right|\right]^{2 \sigma+1+\delta}(1+|x|)^{2}<\infty . \tag{2.20}
\end{equation*}
$$

Then for $n \geqslant 1$,

$$
\begin{align*}
& \left\|\left(Y_{n}\left(W^{2}, f, \cdot\right)-\hat{H}_{n}\left(W^{2}, f, \cdot\right)\right) W^{2} V\right\|_{L_{\infty}(\mathbb{R})} \\
& \quad \leqslant C_{4}\left(\frac{a_{n}}{n}\right)^{1 / 2}[A+D]=o(1), \tag{2.21}
\end{align*}
$$

where $C_{4} \neq C_{4}(n, f)$.
Remarks. (i) The message of (b)-(d) is that the operators H_{n}, H_{n}^{*}; and \hat{H}_{n} are "equiconvergent" with the very simple positive operators

$$
Y_{n}\left(W^{2}, f, x\right):=\sum_{j=1}^{n} f\left(x_{j n}\right) l_{j n}^{2}(x), \quad n \geqslant 1
$$

(ii) We note that the damping factor V decays extremely slowly in comparison to W^{2}. It is undoubtedly not the weakest possible damping
factor for $W=e^{-Q}$, where Q is given by (2.6) and (2.7), but for the general class \mathscr{W}_{2} (and given the present knowledge about orthogonal polynomials for weights on \mathbb{P}) is all that can be achieved. The value of κ and the powers of $\left(1+\left|Q^{\prime}\right|\right)$ and $(1+|x|)$ can be improved for some of the statements above-see Theorems 7.5 and 7.6.
(iii) Even when T is unbounded, mild additional conditions allow us to assume (2.14a) rather than (2.14b). In particular, all the Erdös weights treated in [14] allow this choice, as the correct lower bounds are available for the Christoffel functions.
(iv) For the Freud case, $\left|Q^{\prime}\right|$ is of polynomial growth, so $V(x)$, defined by (2.15), can be replaced by $(1+|x|)^{-\alpha}$ for suitable $\alpha>0$. However, this is not possible for the Erdös case. In both cases we could replace $V(x)$ by $\left(1+\left|Q^{\prime}(x)\right|\right)^{-\beta}$, but again as $\left|Q^{\prime}\right|$ can grow so much faster than any power of $|x|$, this would weaken the statements.
(v) We remark that the bound

$$
\left\|\left(p_{n} W\right)(x)\left|1-\left(x / a_{n}\right)^{2}\right|^{1 / 4}\right\|_{L_{\infty}(\mathbb{R})} \leqslant C a_{n}^{-1 / 2}
$$

has been established for the weight $W^{2}(x)=\exp \left(-x^{2 m}\right), m$ a positive integer [2]. Assuming such a bound, or more generally,

$$
\left\|p_{n} W u_{n}\right\|_{L_{\infty}(\mathbb{R})} \leqslant C a_{n}^{-1 / 2}
$$

allows us to prove analogous of Theorem 2.3, with V replaced by factors involving u_{n}. See $[13,14,21]$ for related bounds.

The boundedness of the operators above, and density of the polynomials in suitably weighted spaces, yields:

Corollary 2.4. In addition to the hypotheses of Theorem 2.3, suppose that f is continuous.
(a) Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(Y_{n}\left(W^{2}, f, \cdot\right)-f(\cdot)\right) W^{2} V\right\|_{L_{\infty}(\mathbb{R})}=0 \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(H_{n}\left(W^{2}, f, \cdot\right)-f(\cdot)\right) W^{2} V\right\|_{L_{\infty}(\mathbb{R})}=0 \tag{2.23}
\end{equation*}
$$

(b) Assuming (2.18), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(H_{n}^{*}\left(W^{2}, f,\left\{d_{l n}\right\}, \cdot\right)-f(\cdot)\right) W^{2} V\right\|_{L_{\infty}(\mathbb{R})}=0 \tag{2.24}
\end{equation*}
$$

and assuming f^{\prime} exists in \mathbb{R} and satisfies (2.20), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(\hat{H}_{n}\left(W^{2}, f, \cdot\right)-f(\cdot)\right) W^{2} V\right\|_{L_{\infty}(\mathbb{F})}=0 \tag{2.25}
\end{equation*}
$$

For the special case of the Hermite weight, $W^{2}(x)=\exp \left(-x^{2}\right)$, (2.23) contains a substantial improvement of the results announced by Knoop [10] that $H_{n}\left(W^{2}, f, \cdot\right) \rightarrow f$ uniformly on compact subsets of \mathbb{R}, when f is of at most polynomial growth at infinity. To the best of my knowledge, Hermite-Fejér interpolation for weights on \mathbb{R} has only been considered previously for the Hermite weight.

For the product integration rules $I_{n}, \hat{I}_{n}, I_{n}^{*}$, and J_{n}, defined by (1.16)-(1.20), we can prove:

Corollary 2.5. Assume the hypotheses of Corollary 2.4 on f and W^{2}. Let $k: \mathbb{R} \rightarrow \mathbb{R}$ be measurable, and assume that

$$
\begin{equation*}
\int_{-\infty}^{\infty}|k(x)| W^{-2}(x) V^{-1}(x) d x<\infty \tag{2.26}
\end{equation*}
$$

where V is given by (2.15).
(a) Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} J_{n}[k ; f]=I[k ; f]:=\int_{-\infty}^{\infty} k(x) f(x) d x \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{n}[k ; f]=I[k ; f] . \tag{2.28}
\end{equation*}
$$

(b) Assuming (2.18), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{n}^{*}[k ; f]=I[k ; f], \tag{2.29}
\end{equation*}
$$

and assuming f^{\prime} exists in \mathbb{R} and satisfies (2.20), we'have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \hat{I}_{n}[k ; f]=I[k ; f] . \tag{2.30}
\end{equation*}
$$

3. Quadrature Sum Estimates

In this section, we estimate quadrature sums of the form

$$
\sum_{j \in \mathscr{S}} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left|x-x_{j n}\right|^{-p}
$$

for suitable \mathscr{S} and $p>0$. The main result-Theorem 3.1 -is of independent
interest, so is proved in greater generality than the rest of this paper. The Markov-Posse-Stieltjes inequalities applied in a suitable form, enable us to estimate the above sums.

Theorem 3.1. Let $W:=e^{-Q}$, where $Q: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, even, and differentiable in $(0, \infty)$. Assume further that
(a) $s Q^{\prime}(s)$ is positive and increasing in $(0, \infty)$.
(b) There exists $B>1$ such that

$$
\begin{equation*}
B s Q^{\prime}(B s)-s Q^{\prime}(s) \geqslant 1, s \geqslant 1 \tag{3.1}
\end{equation*}
$$

Let p be a positive even integer, let $n \geqslant 1$, and $x \in \mathbb{R}$. Let $x_{j n}=x_{j n}\left(W^{2}\right)$, $\lambda_{j n}=\lambda_{j n}\left(W^{2}\right), 1 \leqslant j \leqslant n$, and choose

$$
\begin{equation*}
l, m \in\{1,2, \ldots,\langle n / 2\rangle\} \tag{3.2}
\end{equation*}
$$

such that

$$
\begin{align*}
& |x|>x_{l n} \tag{3.3}\\
& |x|<x_{m+1, n} \tag{3.4}
\end{align*}
$$

Then

$$
\begin{equation*}
\sum_{j:\left|x_{j n}\right| \leqslant x_{l+1, n}} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left|x-x_{j n}\right|^{-p} \leqslant C_{1}\left(|x|-x_{l n}\right)^{-p+1} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j:\left|x_{j n}\right| \geqslant x_{m n}} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left|x-x_{j n}\right|^{-p} \leqslant C_{1}\left(x_{m+1, n}-|x|\right)^{-p+1} \tag{3.6}
\end{equation*}
$$

where $C_{1} \neq C_{1}(n, x, m, l)$ but $C_{1}=C_{1}(W, p)$. If we cannot choose l or m satisfying (3.2) to (3.4) then the corresponding statement is omitted.

Remarks. (a) $Q(x):=|x|^{\beta}, \beta>0$, satisfies the above hypotheses, as does $Q(x):=\exp _{k}\left(|x|^{\beta}\right), \beta>0, k \geqslant 1$.
(b) For arbitrary $p>0$, we can estimate the sum in (3.5), see Lemmas 3.3 and 3.4.
(c) The estimation is possible largely because of the existence of an even entire function $G \sim W^{-2}$ constructed by Clunie and Kövari [3]. For finer results of this type, see [14, Chap. 6].

Lemma 3.2. Let W be as in Theorem 3.1. There exists an even entire function

$$
\begin{equation*}
G(x):=\sum_{j=0}^{\infty} g_{2 j} x^{2 j}, \quad g_{2 j} \geqslant 0, \quad j \geqslant 0 \tag{3.7}
\end{equation*}
$$

such that for some $C_{1}, C_{2}>0$,

$$
\begin{equation*}
C_{1} \leqslant G(x) W^{2}(x) \leqslant C_{2}, \quad x \in \mathbb{R} \tag{3.8}
\end{equation*}
$$

Proof. In order to conform with the notation of [3], we define, for $r>0$,

$$
\begin{gathered}
\phi(r):=\exp \left(2 Q\left(r^{1 / 2}\right)\right) \\
\psi(r):=r \phi^{\prime}(r) / \phi(r)=r^{1 / 2} Q^{\prime}\left(r^{1 / 2}\right)
\end{gathered}
$$

Then ψ is a positive increasing function in $(0, \infty)$ and ϕ admits the representation

$$
\phi(r)=\phi(1) \exp \left(\int_{1}^{r} \frac{\psi(s)}{s} d s\right), \quad r \geqslant 1
$$

Furthermore, by (3.1), for $r \geqslant 1$,

$$
\psi\left(B^{2} r\right)-\psi(r)=B r^{1 / 2} Q^{\prime}\left(B r^{1 / 2}\right)-r^{1 / 2} Q^{\prime}\left(r^{1 / 2}\right) \geqslant 1
$$

By Theorem 4 of [3, pp. 19-20], there exists an entire

$$
f(z):=\sum_{j=0}^{\infty} g_{2 j} z^{j}, \quad g_{2 j} \geqslant 0, j \geqslant 0
$$

such that

$$
\max _{|z|=r}|f(z)|=f(r) \sim \phi(r), \quad r \geqslant 1
$$

Setting $G(x):=f\left(x^{2}\right)$, and increasing g_{0} (if necessary) so as to make it positive, we obtain (3.8).

The proof of Theorem 3.1 will be broken down into several steps.
Lemma 3.3. Let W be as in Theorem 3.1. Let $p>0$, let $n \geqslant 2$ be a positive even integer, and let $x \in \mathbb{R}$. Choose 1 satisfying (3.2) and (3.3). Then

$$
\begin{align*}
\sum_{1} & :=\sum_{j:\left|x_{j n}\right| \leqslant x_{l+1, n}} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left|x-x_{j n}\right|^{-p} \\
& \leqslant C_{1} \int_{0}^{x_{l n}}(|x|-t)^{-p} d t \tag{3.9}
\end{align*}
$$

where $C_{1} \neq C_{1}(n, x, l, p)$. The sum is taken as empty if the choice (3.2), (3.3) is not possible.

Proof. Let $k:=n / 2$ and

$$
U_{1}(t):=W^{2}\left(t^{1 / 2}\right) / t^{1 / 2}, \quad t \in(0, \infty),
$$

and 0 otherwise. It is well known (cf. [6, p. 50; 11, p. 91]) that

$$
\begin{align*}
p_{n}\left(W^{2} ; t^{1 / 2}\right) & =p_{k}\left(U_{1} ; t\right) ; & & \\
x_{j n}^{2} & =x_{j n}\left(W^{2}\right)^{2}=x_{j k}\left(U_{1}\right), & & 1 \leqslant j \leqslant k, \tag{3.10}\\
2 \lambda_{j n} & =2 \lambda_{j n}\left(W^{2}\right)=\lambda_{j k}\left(U_{1}\right), & & 1 \leqslant j \leqslant k .
\end{align*}
$$

Then using the symmetry properties of the zeros and Christoffel numbers for the weight W^{2}, and using Lemma 3.2,

$$
\begin{aligned}
\Sigma_{1} & =\sum_{j: 0<x_{j n} \leqslant x_{l+1, n}} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left[| | x\left|-x_{j n}\right|^{-p}+\left||x|+x_{j n}\right|^{-p}\right] \\
& \leqslant C_{1} \sum_{j: 0<x_{j n} \leqslant x_{l+1, n}} \lambda_{j n} G\left(x_{j n}\right) 2| | x\left|-x_{j n}\right|^{-p} \\
& \leqslant 2^{p+1} C_{1}|x|^{-p} \sum_{j: 0<x_{j n} \leqslant x_{l+1, n}} \lambda_{j n} G\left(x_{j n}\right)\left[1-\left(x_{j n} /|x|\right)^{2}\right]^{-p}
\end{aligned}
$$

$\left(\right.$ as $\left.2^{p}\left(1+x_{j n}|x|\right)^{-p} \geqslant 1\right)$

$$
\begin{equation*}
=C_{2}|x|^{-p} \sum_{j: 0<x_{j n} \leq x_{l+1, n}} \lambda_{j n} H\left(x_{j n}^{2}\right) f\left(x_{j n}^{2}\right), \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
H(s):=G\left(s^{1 / 2}\right)=\sum_{j=0}^{\infty} g_{2 j} s^{j}, \quad s \in(0, \infty), \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
f(s):=\left(1-s / x^{2}\right)^{-p}=\sum_{j=0}^{\infty}\left|\binom{-p}{j}\right|\left(s / x^{2}\right)^{j}, \quad s \in\left[0, x^{2}\right) . \tag{3.13}
\end{equation*}
$$

Note that both H and f have non-negative Maclaurin series coefficients, and hence that $H f$ is absolutely monotone in $\left[0, x^{2}\right.$); that is,

$$
(H f)^{(j)}(s) \geqslant 0, s \in\left[0, x^{2}\right), \quad j \geqslant 0 .
$$

Reexpressing (3.11) with the aid of (3.10) yields

$$
\sum_{1} \leqslant C_{3}|x|^{-p} \sum_{j=l+1}^{k} \lambda_{j k}\left(U_{1}\right) H\left(x_{j k}\left(U_{1}\right)\right) f\left(x_{j k}\left(U_{1}\right)\right) .
$$

We can now apply the classical Markov-Posse-Stieltjes inequality for the weight U_{1} to deduce that

$$
\sum_{1} \leqslant C_{3}|x|^{-p} \int_{0}^{x_{k l}\left(U_{1}\right)} H(t) f(t) U_{1}(t) d t
$$

(See [6, pp. 32-33] for the Markov-Posse-Stieltjes inequality. However a clearer formulation appears in [18, p. 222, Lemma 3.2], but take account that there the zeros are ordered in increasing order.) Then

$$
\begin{aligned}
\sum_{1} & \leqslant C_{3}|x|^{-p} \int_{0}^{x_{l / k}^{1 / 2}\left(U_{1}\right)} H\left(s^{2}\right) f\left(s^{2}\right) W^{2}(s) 2 d s \\
& \leqslant C_{4}|x|^{-p} \int_{0}^{x_{i n}\left(W^{2}\right)} f\left(s^{2}\right) d s
\end{aligned}
$$

by (3.10) and by Lemma 3.2, which shows that

$$
H\left(s^{2}\right) W^{2}(s)=G(s) W^{2}(s) \sim 1 \quad \text { in } \mathbb{R}
$$

Finally,

$$
\begin{aligned}
|x|^{-p} f\left(s^{2}\right) & =|x|^{-p}\left(1-(s /|x|)^{2}\right)^{-p} \\
& \leqslant|x|^{-p}(1-s /|x|)^{-p}=(|x|-s)^{-p}
\end{aligned}
$$

Next, we deal with n odd. This is a little more difficult.
Lemma 3.4. Let W be as in Theorem 3.1. Let $p>0$, let n be an odd positive integer, and let $x \in \mathbb{R}$. Choose l satisfying (3.2) and (3.3). Then (3.9) is valid for some $C_{1} \neq C_{1}(n, x, l, p)$. The sum is taken as empty if the choice (3.2), (3.3) is not possible.

Proof. Let $k:=(n-1) / 2$ and

$$
U_{2}(t):=t^{1 / 2} W^{2}\left(t^{1 / 2}\right), \quad t \in(0, \infty)
$$

and 0 otherwise. It is known (cf. [6, p. 50], [11, pp. 89-90]) that

$$
\begin{align*}
p_{n}\left(W^{2} ; t^{1 / 2}\right) / t^{1 / 2} & =p_{k}\left(U_{2} ; t\right) & & \\
x_{j n}^{2} & =x_{j n}\left(W^{2}\right)^{2}=x_{j k}\left(U_{2}\right), & & 1 \leqslant j \leqslant k \\
2 \lambda_{j n} x_{j n}^{2} & =2 \lambda_{j n}\left(W^{2}\right) x_{j n}\left(W^{2}\right)^{2}=\lambda_{j k}\left(U_{2}\right), & & 1 \leqslant j \leqslant k \tag{3.14}
\end{align*}
$$

Then

$$
\begin{aligned}
\sum_{1}= & |x|^{-p} \lambda_{k+1, n} W^{-2}\left(x_{k+1, n}\right) \\
& +\sum_{j: 0<x_{j n} \leqslant x_{l+1, n}} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left[| | x\left|-x_{j n}\right|^{-p}+\left||x|+x_{j n}\right|^{-p}\right] \\
\leqslant & |x|^{-p} \lambda_{k+1, n} W^{-2}\left(x_{k+1, n}\right) \\
& +C_{2}|x|^{-p} \sum_{j: 0<x_{j n} \leqslant x_{l+1, n}} \lambda_{j n} H\left(x_{j n}^{2}\right) f\left(x_{j n}^{2}\right),
\end{aligned}
$$

exactly as at (3.11), where H and f are defined by (3.12) and (3.13). Note that we have used $x_{k+1, n}=0$. Now let

$$
H_{1}(t):=(H(t)-H(0)) / t=\sum_{j=1}^{\infty} g_{2 j} t^{j-1}, \quad t \in(0, \infty)
$$

Then we have

$$
\begin{align*}
\sum_{1} \leqslant & |x|^{-p} \lambda_{k+1, n} W^{-2}\left(x_{k+1, n}\right) \\
& +C_{2}|x|^{-p} \sum_{j: 0<x_{j n} \leqslant x_{l+1, n}} \lambda_{j n} x_{j n}^{2} H_{1}\left(x_{j n}^{2}\right) f\left(x_{j n}^{2}\right) \\
& +C_{2}|x|^{-p} H(0) \sum_{j: 0<x_{j n} \leqslant x_{l+1, n}} \lambda_{j n} f\left(x_{j n}^{2}\right) \\
= & \sum_{1,1}+\sum_{1,2}+\sum_{1,3}, \tag{3.15}
\end{align*}
$$

say. First, the classical Markov-Stieltjes inequality for W^{2} yields

$$
\begin{aligned}
\sum_{1,1} & =|x|^{-p} \lambda_{k+1, n} W^{-2}(0) \\
& \leqslant|x|^{-p}\left(\int_{x_{k+2, n}}^{x_{k n}} W^{2}(t) d t\right) W^{-2}(0) \\
& =2|x|^{-p}\left(\int_{0}^{x_{k n}} W^{2}(t) d t\right) W^{-2}(0)
\end{aligned}
$$

(as $x_{k+2, n}=-x_{k n}$)

$$
\leqslant 2|x|^{-p} \int_{0}^{x_{k n}} d t
$$

(since $Q(t) \geqslant Q(0)$ in $(0, \infty))$

$$
\begin{equation*}
\leqslant 2 \int_{0}^{x_{k n}}(|x|-t)^{-p} d t \leqslant 2 \int_{0}^{x_{i n}}(|x|-t)^{-p} d t \tag{3.16}
\end{equation*}
$$

Next, we handle the main term $\sum_{1,2}$: Using (3.14),

$$
\begin{aligned}
\sum_{1,2} & =C_{2}|x|^{-p} \sum_{j: 0<x_{j n} \leqslant x_{l+1, n}} \lambda_{j n} x_{j n}^{2} H_{1}\left(x_{j n}^{2}\right) f\left(x_{j n}^{2}\right) \\
& =\left(C_{2} / 2\right)|x|^{-p} \sum_{j=l+1}^{k} \lambda_{j k}\left(U_{2}\right) H_{1}\left(x_{j k}\left(U_{2}\right)\right) f\left(x_{j k}\left(U_{2}\right)\right) \\
& \leqslant\left(C_{2} / 2\right)|x|^{-p} \int_{0}^{x_{l k}\left(U_{2}\right)} H_{1}(t) f(t) U_{2}(t) d t
\end{aligned}
$$

(by the Markov-Posse-Stieltjes inequality for U_{2})

$$
\begin{aligned}
& =C_{2}|x|^{-p} \int_{0}^{x_{\ln (}\left(W^{2}\right)} H_{1}\left(s^{2}\right) f\left(s^{2}\right) W^{2}(s) s^{2} d s \\
& \leqslant C_{2}|x|^{-p} \int_{0}^{x_{\ln }\left(W^{2}\right)} H\left(s^{2}\right) f\left(s^{2}\right) W^{2}(s) d s
\end{aligned}
$$

$\left(\right.$ for $\left.s^{2} H_{1}\left(s^{2}\right)=H\left(s^{2}\right)-H(0) \leqslant H\left(s^{2}\right)\right)$

$$
\begin{equation*}
\leqslant C_{3} \int_{0}^{x_{i n}\left(W^{2}\right)}(|x|-s)^{-p} d s \tag{3.17}
\end{equation*}
$$

exactly as in the previous lemma. Finally, we estimate $\Sigma_{1,3}$. First, note that for $x_{j n} \in[0,|x|)$,

$$
f\left(x_{j n}^{2}\right)=\left(1-\left(x_{j n}| | x \mid\right)^{2}\right)^{-p} \leqslant\left(1-x_{j n} /|x|\right)^{-p}=g\left(x_{j n}\right)
$$

where

$$
g(t):=(1-t /|x|)^{-p}, \quad t \in(-\infty,|x|)
$$

Here g is absolutely monotone in $(-\infty,|x|)$, as is easily verified by successive differentiation. Then the Markov-Posse-Stieltjes inequality for $W^{2}[18$, p. 222, Lemma 3.2(i), (ii)] yields

$$
\begin{aligned}
\sum_{1,3} & =C_{2}|x|^{-p} H(0) \sum_{j: 0<x_{j n} \leqslant x_{l+1, n}} \lambda_{j n} f\left(x_{j n}^{2}\right) \\
& \leqslant C_{2}|x|^{-p} H(0) \sum_{j: 0<x_{j n} \leqslant x_{l+1, n}} \lambda_{j n} g\left(x_{j n}\right) \\
& =C_{2}|x|^{-p} H(0)\left[\sum_{j=l+1}^{n}-\sum_{j=k+1}^{n}\right] \lambda_{j n} g\left(x_{j n}\right) \\
& \leqslant C_{2}|x|^{-p} H(0)\left[\int_{-\infty}^{x_{l n}}-\int_{-\infty}^{x_{k+1, n}}\right] g(t) W^{2}(t) d t \\
& =C_{2}|x|^{-p} H(0) \int_{0}^{x_{l n}} g(t) W^{2}(t) d t \\
& \leqslant C_{2} H(0) W^{2}(0) \int_{0}^{x_{l n}}(|x|-t)^{-p} d t,
\end{aligned}
$$

as W is decreasing in $[0, \infty)$. Together with (3.15) to (3.17), this yields the result.

Next, we handle the somewhat more problematic terms in (3.6). Here the summand can no longer be absolutely/completely monotone in the relevant range.

Lemma 3.5. Let W be as in Theorem 3.1. Let n and p be positive even integers and let $x \in \mathbb{R}$. Choose m satisfying (3.2) and (3.4). Then

$$
\begin{align*}
\sum_{2} & :=\sum_{j:\left|x_{j n}\right| \geqslant x_{m n}} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left|x-x_{j n}\right|^{-p} \\
& \leqslant C_{2} \int_{x_{m+1, n}}^{\infty}(t-|x|)^{-p} d t \tag{3.18}
\end{align*}
$$

where $C_{2} \neq C_{2}(n, x, m, p)$. The sum is taken as empty if the choice (3.2), (3.4) is not possible.

Proof. Let U_{1} be as in Lemma 3.3 and let G be as in Lemma 3.2. Then

$$
\begin{aligned}
\sum_{2} & :=\sum_{j: x_{n n} \geqslant x_{m n}} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left[| | x\left|-x_{j n}\right|^{-p}+\left||x|+x_{j n}\right|^{-p}\right] \\
& \leqslant C_{1} \sum_{j: x_{n} \geqslant x_{m n}} \lambda_{j n} G\left(x_{j n}\right) 2| | x\left|-x_{j n}\right|^{-p} \\
& \leqslant 2^{p+1} C_{1} \sum_{j: x_{n n} \geqslant x_{n n}} \lambda_{j n} G\left(x_{j n}\right)\left(x_{j n}^{2}\right)^{-p / 2}\left(1-\left(|x| / x_{j n}\right)^{2}\right)^{-p}
\end{aligned}
$$

(as $\left.2^{p}\left(1+|x| / x_{j n}\right)^{-p} \geqslant 1\right)$

$$
=2^{p+1} C_{1} \sum_{j: x_{j n} \geqslant x_{m n}} \lambda_{j n} G\left(x_{j n}\right) f_{1}\left(x_{j n}^{2}\right),
$$

where

$$
\begin{equation*}
f_{1}(t):=t^{-p / 2}\left(1-x^{2} / t\right)^{-p}=\sum_{j=0}^{\infty}\left|\binom{-p}{j}\right| x^{2 j} t^{-j-p / 2}, \quad t>x^{2} \tag{3.19}
\end{equation*}
$$

It is crucially important here that all these series coefficients be nonnegative and that $j+p / 2$ be an integer for $j \geqslant 0$. Then we can write

$$
\begin{equation*}
G(t) f_{1}\left(t^{2}\right)=\sum_{i=-\infty}^{\infty} \beta_{i} t^{2 i}, \quad t>x^{2} \tag{3.20}
\end{equation*}
$$

where $\beta_{i} \geqslant 0$ for all i. Then

$$
\begin{align*}
\sum_{2} & \leqslant 2^{p+1} C_{1} \sum_{i=-\infty}^{\infty} \beta_{i}\left(\sum_{j: x_{j n} \geqslant x_{m n}} \lambda_{j n} x_{j n}^{2 i}\right) \\
& =: 2^{p+1} C_{1} \sum_{i=-\infty}^{\infty} \beta_{i} \chi_{i}, \tag{3.21}
\end{align*}
$$

say. Of course, the interchanges are justified by non-negativeness of the series terms. Now we can use (3.10) to write

$$
\begin{equation*}
\chi_{i}=\sum_{j: x_{j n} \geqslant x_{n n n}} \lambda_{j n} x_{j n}^{2 i}=\frac{1}{2} \sum_{j=1}^{m} \lambda_{j k}\left(U_{1}\right) x_{j k}\left(U_{1}\right)^{i} \tag{3.22}
\end{equation*}
$$

Suppose first $i \geqslant 0$. Then the function $t \rightarrow t^{i}$ is absolutely monotone in $[0, \infty)$ in the sense that all its derivatives are non-negative. By the Markov-Posse-Stieltjes inequality for $U_{1}[18$, p. 222, Lemma 3.2], [6, p. 92, Lemma 1.5]

$$
\begin{align*}
\chi_{i} & =\frac{1}{2}\left(\sum_{j=1}^{n}-\sum_{j=m+1}^{n}\right) \lambda_{j k}\left(U_{1}\right) x_{j k}\left(U_{1}\right)^{i} \\
& \leqslant \frac{1}{2}\left(\int_{0}^{\infty}-\int_{0}^{x_{m+1, n}\left(U_{1}\right)}\right) t^{i} U_{1}(t) d t \\
& =\frac{1}{2} \int_{x_{m+1, n}\left(U_{1}\right)}^{\infty} t^{i} U_{1}(t) d t \\
& =\int_{x_{m+1, n}\left(W^{2}\right)}^{\infty} s^{2 i} W^{2}(s) d s \tag{3.23}
\end{align*}
$$

Next, suppose $i<0$. Then the function $t \rightarrow t^{i}$ is completely monotone in $(0, \infty)$ in the sense that

$$
(-1)^{i}\left(\frac{d}{d t}\right)^{j} t^{i}>0, \quad t \in(0, \infty), j \geqslant 0
$$

Then the Markov-Posse-Stieltjes inequality for $U_{1}[18$, p. 223, Lemma 3.3] yields

$$
\chi_{i} \leqslant \frac{1}{2} \int_{x_{m+1, n}\left(U_{1}\right)}^{\infty} t^{i} U_{1}(t) d t=\int_{x_{m+1, n}\left(W^{2}\right)}^{\infty} s^{2 i} W^{2}(s) d s
$$

Substituting (3.23), which we have shown valid for all $i=0, \pm 1, \pm 2, \ldots$, into (3.21) yields

$$
\begin{aligned}
\sum_{2} & \leqslant 2^{p+1} C_{1} \int_{x_{m+1, n}\left(W^{2}\right)}^{\infty}\left(\sum_{i=-\infty}^{\infty} \beta_{i} s^{2 i}\right) W^{2}(s) d s \\
& =2^{p+1} C_{1} \int_{x_{m+1, n}\left(W^{2}\right)}^{\infty} G(s) f_{1}\left(s^{2}\right) W^{2}(s) d s
\end{aligned}
$$

(by (3.20))

$$
\leqslant C_{2} \int_{x_{m+1, n}\left(W^{2}\right)}^{\infty} f_{1}\left(s^{2}\right) d s
$$

by Lemma 3.2. Finally,

$$
f_{1}\left(s^{2}\right)=s^{-p}\left(1-(|x| / s)^{2}\right)^{-p} \leqslant s^{-p}(1-|x| / s)^{-p}=(s-|x|)^{-p} .
$$

Finally, we deal with the sum (3.6) for n odd.
Lemma 3.6. Let W be as in Theorem 3.1. Let n be an odd positive integer, p be an even positive integer, and let $x \in \mathbb{R}$. Choose m satisfying (3.2) and (3.4). Then (3.18) holds, where $C_{2} \neq C_{2}(n, x, m, p)$. The sum is taken as empty if the choice (3.2), (3.4) is not possible.

Proof. Let U_{2} be as in Lemma 3.4. Let f_{1} be as at (3.19). Exactly as in the previous lemma, we obtain (3.21). So we must estimate $\chi_{i}, i=0$, $\pm 1, \pm 2, \ldots$. Using (3.14), we see that

$$
\chi_{i}=\sum_{j: x_{j n} \geqslant x_{m n}} \lambda_{j n} x_{j n}^{2 i}=\frac{1}{2} \sum_{j=1}^{m} \lambda_{j k}\left(U_{2}\right) x_{j k}\left(U_{2}\right)^{i-1}
$$

Proceeding exactly as in the previous lemma, we see that for all i,

$$
\begin{aligned}
\chi_{i} & \leqslant \frac{1}{2} \int_{x_{m+1, n}\left(U_{2}\right)}^{\infty} t^{i-1} U_{2}(t) d t \\
& =\int_{x_{m+1, n}\left(W^{2}\right)}^{\infty} s^{2 i} W^{2}(s) d s
\end{aligned}
$$

We can then proceed as before to obtain (3.18).
Proof of Theorem 3.1. For n even, (3.5) follows from Lemma 3.3 and for n odd, from Lemma 3.4. For n even, (3.6) follows from Lemma 3.5, and for n odd, from Lemma 3.6.

4. Technical Estimates

In this section, we list some technical estimates, mostly proved in other papers.

Lemma 4.1. Let $W \in \mathscr{W}_{1}$ and $\eta:=\eta(W)$ be as in (2.4).
(a) For $x>0, L \geqslant 1$,

$$
\begin{equation*}
Q(x) \leqslant L^{-1} Q(L x) \tag{4.1}
\end{equation*}
$$

(b) $\exists C>0$ such that

$$
\begin{equation*}
Q\left(a_{u}\right) \leqslant C u, \quad u \in(0, \infty) . \tag{4.2}
\end{equation*}
$$

(c) $\exists C_{1}, C_{2}, C_{3}$ such that

$$
\begin{array}{ll}
Q^{\prime}(x) \geqslant C_{1} x^{\eta}, & x \geqslant C_{3} . \\
Q(x) \geqslant C_{2} x^{1+\eta}, & x \geqslant C_{3} . \tag{4.4}
\end{array}
$$

(d)

$$
\begin{equation*}
a_{u} \leqslant C_{4} u^{1 /(1+\eta)}, \quad u \geqslant C_{5} . \tag{4.5}
\end{equation*}
$$

(e) There exist C_{6}, C_{7}, C_{8} such that for $v \geqslant u \geqslant C_{8}$,

$$
\begin{equation*}
\left(1+C_{6} / u\right)(v / u)^{1 /(1+\eta)} \geqslant a_{v} / a_{u} \geqslant(v / u)^{C / /\left(\log Q^{\prime}\left(a_{v}\right)\right)^{2}} \tag{4.6}
\end{equation*}
$$

Proof. (a) to (d) are Lemma 3.1 in [19]; (e) is Lemma 3.2 in [19]. Note that \mathscr{W}_{1} is contained in the class \mathscr{W} of [19].

We recall, for the reader's convenience, that "increasing tendency" was defined at the end of Section 1.

Lemma 4.2. Let $W \in \mathscr{W}_{1}$ and $\eta:=\eta(W)$ be as in (2.4).
(a) For $u \geqslant C_{1}$,

$$
\begin{equation*}
u \leqslant a_{u} Q^{\prime}\left(a_{u}\right) \leqslant C_{2} u T\left(a_{u}\right)^{1 / 2} \leqslant C_{3} u \log u . \tag{4.7}
\end{equation*}
$$

(b) For $u \geqslant C_{4}$,

$$
\begin{equation*}
Q^{\prime}\left(a_{u}\right) \geqslant C_{5} u^{\eta /(1+n)} . \tag{4.8}
\end{equation*}
$$

(c) Thas increasing tendency in $(0, \infty)$.
(d)

$$
\begin{equation*}
\max _{|x| \leqslant a_{u}} T(x) \leqslant C_{6}(\log u)^{2}, \quad u \geqslant C_{7} . \tag{4.9}
\end{equation*}
$$

(e)

$$
\begin{equation*}
C_{8} /\left(u T\left(a_{u}\right)\right) \leqslant a_{u}^{\prime} / a_{u} \leqslant 1 /(u(1+\eta)), \quad u \in(0, \infty) . \tag{4.10}
\end{equation*}
$$

(f)

$$
\begin{align*}
a_{r u} / a_{u} & \geqslant \exp \left(C_{9} \frac{\log r}{T\left(a_{r u}\right)}\right) \tag{4.11}\\
& \geqslant 1+C_{9}(\log r) / T\left(a_{r u}\right) \tag{4.12}\\
& \geqslant 1+C_{10} /(\log u)^{2}, \tag{4.13}
\end{align*}
$$

$u \in(0, \infty), r \in(1, \infty)$. Here $C_{9} \neq C_{9}(r, u)$ but $C_{10}=C_{10}(r)$.
(g)

$$
\begin{equation*}
1 \leqslant a_{r u} / a_{u} \leqslant r^{1:(1+n)}, \quad u \in(0, \infty), r \in(1, \infty) . \tag{4.14}
\end{equation*}
$$

Proof. (a) For the inequality $a_{u} Q^{\prime}\left(a_{u}\right) \geqslant u$, see, for example, Lemma 3.3(b) in [19]. Next, when T is bounded, Lemma 3.1(c) in [12, p. 1071] shows (under less restrictive hypotheses) that

$$
a_{u} Q^{\prime}\left(a_{u}\right) \sim u,
$$

and hence as T is bounded above and below,

$$
a_{u} Q^{\prime}\left(a_{u}\right) \sim u T\left(a_{u}\right)^{1 / 2} .
$$

When T is unbounded, Lemma 2.2(c) in [15, p. 200] shows that

$$
\begin{equation*}
a_{u} Q^{\prime}\left(a_{u}\right) \leqslant C u T\left(a_{u}\right)^{1 / 2} . \tag{4.15}
\end{equation*}
$$

(Note that in [15], $\chi=T$ and we choose $j=1$). Thus (4.15) holds whether T is bounded or unbounded. Finally, (2.5) yields the rightmost inequality in (4.7).
(b) This follows from the leftmost inequality in (4.7) and from (4.5).
(c) If T is unbounded, then we assumed it is increasing, and so trivially has increasing tendency. If T is bounded, then $T \sim 1$ in $(0, \infty)$, so the increasing tendency is again trivial.
(d) By (c), and by (2.5) and (4.7),

$$
\max _{|x| \leqslant u_{u}} T(x) \leqslant C T\left(a_{u}\right) \leqslant C_{1}(\log u)^{2} .
$$

(e) Differentiating (2.8) with respect to u yields

$$
1=\frac{a_{u}^{\prime}}{a_{u}} \frac{2}{\pi} \int_{0}^{1} \frac{a_{u} t Q^{\prime}\left(a_{u} t\right) T\left(a_{u} t\right)}{\left(1-t^{2}\right)^{1 / 2}} d t
$$

Since

$$
1+\eta \leqslant T\left(a_{u} t\right) \leqslant C T\left(a_{u}\right), \quad t \in(0,1], u>0,
$$

the definition (2.8) of a_{u} yields

$$
\begin{aligned}
& 1 \leqslant C\left(\frac{a_{u}^{\prime}}{a_{u}}\right) u T\left(a_{u}\right) \\
& 1 \geqslant\left(\frac{a_{u}^{\prime}}{a_{u}}\right) u(1+\eta) .
\end{aligned}
$$

Hence (4.10).
(i)

$$
\begin{aligned}
a_{r u} / a_{u} & =\exp \left(\int_{u}^{r u} a_{t}^{\prime} / a_{t} d t\right) \\
& \geqslant \exp \left(C_{9} \int_{u}^{r u}\left(t T\left(a_{t}\right)\right)^{-1} d t\right) \quad(b y(4.10)) \\
& \geqslant \exp \left(C_{11} T\left(a_{r u}\right)^{-1} \int_{u}^{r u} t^{-1} d t\right) \\
& =\exp \left(C_{11} T\left(a_{r u}\right)^{-1} \log r\right)
\end{aligned}
$$

Then (4.12) also follows and (4.9) yields (4.13).
(g) This is similar to (f): Use the upper bound in (4.10) rather than the lower bound.

Lemma 4.3. Let $W \in \mathscr{W}_{1}$. There exists n_{1} such that

$$
\begin{equation*}
\rho_{n}:=\gamma_{n-1}\left(W^{2}\right) / \gamma_{n}\left(W^{2}\right) \leqslant a_{5 n}, n \geqslant n_{1} . \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
x_{1 n}=x_{1 n}\left(W^{2}\right) \leqslant a_{5 n}, n \geqslant n_{1} \tag{4.16}
\end{equation*}
$$

(iii) For $n \geqslant 1$ and $1 \leqslant j \leqslant n$,

$$
\begin{equation*}
\left|p_{n}^{\prime \prime}\left(x_{j n}\right) / p_{n}^{\prime}\left(x_{j n}\right)\right| \leqslant C\left[1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right] . \tag{4.18}
\end{equation*}
$$

Proof. For (i), (ii), see Corollary 4.4 in [19]. For (iii), we use (5.5) in Lemma 5.1 in [19] and Lemma 5.3 in [19] to deduce (with the notation there) that

$$
\begin{aligned}
\left|p_{n}^{\prime \prime}\left(x_{j n}\right) / p_{n}^{\prime}\left(x_{j n}\right)\right| & =\left|2 Q^{\prime}\left(x_{j n}\right)+A_{n}^{\prime}\left(x_{j n}\right) / A_{n}\left(x_{j n}\right)\right| \\
& \leqslant C\left[1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right]
\end{aligned}
$$

5. Markov-Bernstein Inequalities

In this section, we present some L_{∞} Markov-Bernstein inequalities. Recent work on this topic appears in $[12,17,24,26]$. For fairly general Freud weights, it is known [12] that

$$
\begin{equation*}
\left\|P^{\prime} W\right\|_{L_{\infty}(\mathbb{R})}+\left\|(P W)^{\prime}\right\|_{L_{x x}(\mathbb{R})} \leqslant C \frac{n}{a_{n}}\|P W\|_{L_{\infty}(\mathbb{R})}, \quad P \in \mathscr{P}_{n} \tag{5.1}
\end{equation*}
$$

For fairly general Erdös weights W, it is known [15] that

$$
\begin{equation*}
\left\|P^{\prime} W\right\|_{L_{x}(\mathbb{R})}+\left.\left\|\left.(P W)^{\prime}\right|_{L_{x}(\mathbb{R})} \leqslant C \frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2}\right\| P W\right|_{L_{x}(\mathbb{R})}, \quad P \in \mathscr{P}_{n} . \tag{5.2}
\end{equation*}
$$

The unbounded factor $T\left(a_{n}\right)$ cannot be replaced by a more slowly growing factor [14].

Since we can only deal with n / a_{n} in the context of the paper, we prove inequalities in which $T\left(a_{n}\right)^{1 / 2}$ is replaced by a function of x, independent of n. The main result of this section is:

Theorem 5.1. Let $W:=e^{-Q} \in \mathscr{W}_{1}$. Let $\beta \in \mathbb{R}$. Then for $n \geqslant 1$ and $P \in \mathscr{P}_{n}$,

$$
\begin{align*}
& \|\left.\left[\left|P^{\prime} W\right|+\left|(P W)^{\prime}\right|\right]\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{\cdot}\right|_{L_{L_{x}(\text { (X) }}} \\
& \left.\quad \leqslant C \frac{n}{a_{n}} \right\rvert\, P W\left[1+\left|Q^{\prime}\right|\right]^{\beta} \|_{L_{x}(\dot{\beta})} . \tag{5.3}
\end{align*}
$$

Here $C \neq C(n, P)$. If T is bounded, then the factor $\left(\log \left(2+\left|Q^{\prime}\right|\right)\right)^{2}$ may be omitted.

We remark that when T is unbounded, stricter regularity assumptions on Q allow us to replace $\left(\log \left(2+\left|Q^{\prime}\right|\right)\right)^{-2}$ by the "correct" factor $T^{-1 / 2}$. Our first step in proving Theorem 5.1 is an infinite-finite range inequality.

Lemma 5.2. Let $W:=e^{Q} \in \mathscr{W}_{1}$. Let $0<p<\infty, \alpha \geqslant 0$ and $\beta, \Delta \in \mathbb{R}$. Then $\exists C \neq(n, P)$ such that for $n \geqslant 1$ and $P \in \mathscr{P}_{n}$,

$$
\begin{align*}
& \|\left. P W\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{A}\right|_{I_{\cdot p}(\mathrm{t})} \\
& \quad \leqslant\left(1+C n^{-x}\right)\left\|P W\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{A}\right\|_{\left.L_{\rho} \Gamma a_{4 n}, a_{4 n}\right]} \tag{5.4}
\end{align*}
$$

Furthermore, for $n \geqslant 1$ and $P \in \mathscr{P}_{n}$,

$$
\begin{align*}
& \left\|P W\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{\Delta}\right\|_{\left.L_{p(: t} \mid \geqslant a_{4 n}\right)} \\
& \quad \leqslant C n^{-x}\|P W\|_{\left.L_{p} \mid, a_{4 n}, a_{4 n}\right]} . \tag{5.5}
\end{align*}
$$

Proof. Under somewhat weaker conditions on Q than those for \mathscr{W}_{1}, it was shown in [19, Proof of Theorem 4.3] that if $\beta^{\prime} \geqslant 0$,

$$
\left\|P W\left[1+\left|Q^{\prime}\right|\right]^{\beta^{\prime}}\right\|_{L_{p}\left(|t| \geqslant a_{4}\right)} \leqslant n^{-2 x}\|P W\|_{L_{p}(\beta)}, \quad n \geqslant n_{1}, P \in \mathscr{P}_{n} .
$$

Applying this with the special case $\beta^{\prime}=0$ to the right hand-side yields

$$
\left\|P W\left[1+\left|Q^{\prime}\right|\right]^{\beta^{\prime}}\right\|_{L_{p}\left(|r| \geqslant a_{4 n}\right)} \leqslant 2 n^{-2 x}\|P W\|_{I_{-p}\left[\cdot a_{\left.4_{n}, a_{4 n}\right]}\right.}, \quad n \geqslant n_{2}, P \in \mathscr{P}_{n} .
$$

Since for any $\Delta, \beta \in \mathbb{R}, \exists \beta^{\prime} \geqslant 0$ such that

$$
\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{A} \leqslant C_{1}\left[1+\left|Q^{\prime}\right|\right]^{\beta^{\prime}} \quad \text { in } \mathbb{R},
$$

we then obtain (5.5) at least for $n \geqslant n_{2}$. The remaining finitely many n can be treated by a compactness argument. To deduce (5.4) from (5.5), we note that

$$
\begin{aligned}
\|P W\|_{L_{p}\left[-a_{4 n}, a_{4 n}\right]} \leqslant & \left\|P W\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{A}\right\|_{L_{p}\left[-a_{4 n}, a_{4 n}\right]} \\
& \times\left[1+Q^{\prime}\left(a_{4 n}\right)\right]^{|\beta|}\left[\log \left(2+Q^{\prime}\left(a_{4 n}\right)\right)\right]^{|A|} \\
\leqslant & C n^{\alpha / 2}\left\|P W\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{A}\right\|_{L_{p}\left[-a_{4 n}, a_{4 n}\right]}
\end{aligned}
$$

if $\alpha / 2>|\beta|$, and we have used (4.7) to bound $Q^{\prime}\left(a_{4 n}\right)$. Substituting this last inequality into (5.5) yields

$$
\begin{aligned}
& \left\|P W\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{A}\right\|_{L_{p}\left(|t| \geqslant a_{4}\right)} \\
& \quad \leqslant C_{1} n^{-\alpha / 2}\left\|P W\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{A}\right\|_{L_{p}\left[-a_{s_{s}}, a_{4}\right]} .
\end{aligned}
$$

Since α may be replaced by 2α and $a_{4 n} \neq a_{4 n}(\alpha)$, we obtain (5.4).
We use [12] for Freud weights, and [15] for Erdös weights, in proving Theorem 5.1. First, Freud weights:

Lemma 5.3. Let $W \in \mathscr{W}_{1}$ and assume that T is bounded. Then $\exists C$ such that for $n \geqslant 1$ and $P \in \mathscr{P}_{n}$,

$$
\begin{equation*}
\left\|\left|P^{\prime} W\right|+\left|(P W)^{\prime}\right|\right\|_{L_{\infty}(\mathbb{R})} \leqslant C \frac{n}{a_{n}}\|P W\|_{L_{\infty}(\mathbb{R})} \tag{5.6}
\end{equation*}
$$

Proof. By Theorem 1.1 in [12, p. 1066]

$$
\begin{equation*}
\left\|P^{\prime} W\right\|_{L_{\infty}(\mathbb{R})} \leqslant\left(\int_{1}^{C_{n}} d s / Q^{[-1]}(s)\right)\|P W\|_{L_{\infty}(\mathbb{R})}, \tag{5.7}
\end{equation*}
$$

$n \geqslant 1, P \in \mathscr{P}_{n}$. Here $Q^{[-1]}$ denotes the inverse function of Q. Also by Theorem 1.3 in [12, p. 1067] with $\eta=\frac{1}{2}$ there,

$$
\begin{equation*}
\left\|(P W)^{\prime}\right\|_{L_{\infty}\left(|l| \geqslant a_{n \mid 2}\right)} \leqslant C \frac{n}{a_{n}}\|P W\|_{L_{\infty}(\mathbb{R})} \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|(P W)^{\prime}\right\|_{L_{x}\left[-a_{n / 2}, a_{n / 2}\right]} \leqslant\left(\int_{1}^{C n} d s / Q^{[-1]}(s)\right)\|P W\|_{L_{x 0}(R)} \tag{5.9}
\end{equation*}
$$

$n \geqslant 1, P \in \mathscr{P}_{n}$. It clearly suffices to show that

$$
\begin{equation*}
\theta_{n}:=\int_{1}^{C n} d s / Q^{[-1]}(s) \leqslant C_{2} n / a_{n} . \tag{5.10}
\end{equation*}
$$

Now it is shown in [12, p. 1071, Eq. (3.6)] that

$$
\begin{equation*}
a_{n} x Q^{\prime}\left(a_{n} x\right) \sim Q\left(a_{n} x\right) \sim n, \tag{5.11}
\end{equation*}
$$

uniformly for $x \in[a, b]$, any $0<a<b<\infty$. Then for $n \geqslant 1, J \geqslant 1$, and some $C_{3} \neq C_{3}(J, n)$,

$$
Q\left(a_{J n}\right) \geqslant C_{3} J n .
$$

Together these imply that for some fixed integer $J>0$, and with C as in (5.9),

$$
Q\left(a_{J_{n}}\right) \geqslant C n, n \geqslant n_{1} .
$$

Then

$$
\theta_{n} \leqslant \int_{1}^{Q\left(a a_{n}\right)} d s / Q^{[-1]}(s)=\int_{Q^{[-1]_{(1)}}}^{a_{J_{n}}} Q^{\prime}(t) / t d t
$$

Now for $0<\varepsilon<\eta$,

$$
\begin{aligned}
\frac{d}{d t}\left(Q^{\prime}(t) / t^{\varepsilon}\right) & =Q^{\prime}(t) t^{-1-\varepsilon}(T(t)-1-\varepsilon) \\
& \geqslant(\eta-\varepsilon) Q^{\prime}(t) t^{-1-\varepsilon}>0, \quad t>0
\end{aligned}
$$

so $Q^{\prime}(t) / t^{\varepsilon}$ is increasing. Then

$$
\begin{aligned}
\theta_{n} & \leqslant Q^{\prime}\left(a_{J n}\right) a_{J n}^{-\varepsilon} \int_{Q^{[-1]}(1)}^{a_{J n}} t^{-1+\varepsilon} d t \\
& \leqslant C_{4} Q^{\prime}\left(a_{J n}\right) \leqslant C_{5} n / a_{n}
\end{aligned}
$$

by (5.11). Hence (5.10).
Lemma 5.4. Let $W \in \mathscr{W}_{1}$ and assume that T is unbounded. Then $\exists C$ such that for $n \geqslant 1$ and $P \in \mathscr{P}_{n}$,

$$
\begin{equation*}
\left\|\left[\left|P^{\prime} W\right|+\left|(P W)^{\prime}\right|\right]\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{-2}\right\|_{L_{\infty}(\mathbb{B})} \leqslant C \frac{n}{a_{n}}\|P W\|_{L_{\infty}(\mathbb{R})} \tag{5.12}
\end{equation*}
$$

Proof. Let us first assume that $Q^{\prime \prime}$ is continuous in \mathbb{R}. For $n \geqslant 1$ and $x \in[0,1]$, let

$$
\psi_{n}(x):=\int_{1 / a_{n}}^{1}(1-s)^{-1 / 2} \frac{a_{n} x Q^{\prime}\left(a_{n} x\right)-a_{n} s Q^{\prime}\left(a_{n} s\right)}{a_{n} x-a_{n} s} d s
$$

and

$$
A_{n}^{*}:=n^{-1} \int_{1 / 2}^{1}(1-s)^{-1 / 2}\left(a_{n} s\right)^{2} Q^{\prime \prime}\left(a_{n} s\right) d s
$$

A result in [15, pp. 194-195] states that for $n \geqslant n_{1}, P \in \mathscr{P}_{n}$,

$$
\begin{align*}
\left|(P W)^{\prime}(x)\right| & \leqslant C\|P W\|_{L_{\infty}(\mathbb{R})}\left(1-\left|\frac{x}{a_{n}}\right|\right)^{-1} \int_{\left|x / a_{n}\right|}^{1} \psi_{n}(t)(1-t)^{1 / 2} d t \tag{5.13}\\
|x| & \leqslant a_{n}\left(1-\left(n A_{n}^{*}\right)^{-2 / 3}\right)
\end{align*}
$$

Furthermore,

$$
\begin{equation*}
\left\|(P W)^{\prime}\right\|_{L_{\infty}\left[-a_{n} / 2, a_{n} / 2\right]} \leqslant C \frac{n}{a_{n}}\|P W\|_{L_{\infty}(\mathbb{R})} . \tag{5.14}
\end{equation*}
$$

Since [15, p. 200, Eq. (2.15)]

$$
\lim _{n \rightarrow \infty} a_{n} Q^{\prime}\left(a_{n} / 2\right) / n=0
$$

it follows that

$$
\max \left\{\left|Q^{\prime}(x)\right|:|x| \leqslant a_{n} / 2\right\}=o\left(n / a_{n}\right)
$$

so (5.14) also yields

$$
\begin{equation*}
\left\|\left[\left|P^{\prime} W\right|+\left|(P W)^{\prime}\right|\right]\right\|_{L_{\infty}\left[-a_{n} / 2, a_{n} / 2\right]} \leqslant C \frac{n}{a_{n}}\|P W\|_{L_{\infty}(\mathbb{R})} \tag{5.15}
\end{equation*}
$$

$P \in \mathscr{P}_{n}, n \geqslant n_{1}$.
We now deal with $|x| \geqslant a_{n} / 2$. Now in [15, p. 208, Eq. (3.26)], it is shown that

$$
\psi_{n}(t)(1-t)^{1 / 2} \sim \frac{n}{a_{n}} \mu_{n}(t) \text { uniformly for } t \in\left[\frac{1}{2}, 1\right)
$$

$n \geqslant n_{1}$. Here μ_{n} is a non-negative function in $[-1,1]$ with [15, p. 205]

$$
\int_{-1}^{1} \mu_{n}(t) d t=1
$$

Hence for $|x| \in\left[a_{n} / 2, a_{n}\right]$,

$$
\int_{\left|x ; a_{n}\right|}^{1} \psi_{n}(t)(1-t)^{1: 2} d t \leqslant C_{1} \frac{n}{a_{n}} \int_{\left|\times ; a_{n}\right|}^{1} \mu_{n}(t) d t \leqslant C_{1} \frac{n}{a_{n}} .
$$

Next, by definition of T, we can write

$$
\begin{aligned}
A_{n}^{*} & =n^{-1} \int_{1: 2}^{1} a_{n} s Q^{\prime}\left(a_{n} s\right)(1-s)^{-1 / 2}\left(T\left(a_{n} s\right)-1\right) d s \\
& \geqslant \eta n^{-1} \int_{1: 2}^{1} a_{n} s Q^{\prime}\left(a_{n} s\right)\left(1-s^{2}\right)^{-1 / 2} d s(\text { by }(2.4)) \\
& \geqslant \eta \pi / 4,
\end{aligned}
$$

by definition of a_{n} and since $a_{n} s Q^{\prime}\left(a_{n} s\right)\left(1-s^{2}\right)^{-1 / 2}$ is increasing in $(0,1)$. Hence we can rewrite (5.13) in the form

$$
\begin{equation*}
\left|P^{\prime} W\right|(x)+\left|(P W)^{\prime}(x)\right| \leqslant \mid P W \|_{L_{x}(\mathrm{R})}\left[\left|Q^{\prime}(x)\right|+C_{2} \frac{n}{a_{n}}\left(1-\left|\frac{x}{a_{n}}\right|\right)^{-1}\right], \tag{5.16}
\end{equation*}
$$

$n \geqslant n_{1}, P \in \mathscr{P}_{n}, a_{n} / 2 \leqslant|x| \leqslant a_{n}\left(1-C_{3} n^{2 / 3}\right)$. In view of (4.13) in Lemma 4.2(f), we also have this valid for $a_{n} / 2 \leqslant|x| \leqslant a_{n / 2}$. Now for such x, write $|x|=a_{u}$, where $0<u \leqslant n / 2$. Then by (4.7) and (4.8),

$$
\begin{aligned}
\left|x Q^{\prime}(x)\right| & \leqslant a_{u} Q^{\prime}\left(a_{u}\right) \leqslant C_{3} u(\log u) \\
& \leqslant C_{4} u\left[\log \left(2+Q^{\prime}\left(a_{u}\right)\right)\right] \leqslant C_{4} \frac{n}{2}\left[\log \left(2+\left|Q^{\prime}(x)\right|\right)\right] .
\end{aligned}
$$

Since $|x| \geqslant a_{n} / 2$, we obtain

$$
\begin{equation*}
\left|Q^{\prime}(x)\right| \leqslant C_{s} \frac{n}{a_{n}} \log \left(2+\left|Q^{\prime}(x)\right|\right) \tag{5.17}
\end{equation*}
$$

$a_{n} / 2 \leqslant|x| \leqslant a_{n i 2}$. Also recalling our definition $|x|=a_{u}$,

$$
\begin{aligned}
\left(1-\left|\frac{x}{a_{n}}\right|\right)^{-1} & =\left(1-\frac{a_{u}}{a_{n}}\right)^{1} \\
& \leqslant\left(1-\frac{a_{u}}{a_{2 u}}\right)^{-1} \quad(\text { as } n \geqslant 2 u) \\
& \leqslant C_{6}(\log u)^{2} \quad(\text { by }(4.13)) \\
& \leqslant C_{7}\left[\log \left(2+Q^{\prime}\left(a_{u}\right)\right)\right]^{2}=C_{7}\left[\log \left(2+Q^{\prime}(x)\right)\right]^{2},
\end{aligned}
$$

by (4.8). Together with (5.17) this enables us to write (5.16) in the form

$$
\begin{aligned}
& \left|P^{\prime} W\right|(x)+\left|(P W)^{\prime}(x)\right| \\
& \quad \leqslant C_{8}\|P W\|_{L_{\infty}(\mathbb{R})} \frac{n}{a_{n}}\left\{\left[\log \left(2+\left|Q^{\prime}(x)\right|\right)\right]+\left[\log \left(2+\left|Q^{\prime}(x)\right|\right)\right]^{2}\right\},
\end{aligned}
$$

$n \geqslant n_{1}, P \in \mathscr{P}_{n}, a_{n} / 2 \leqslant|x| \leqslant a_{n / 2}$. Combined with (5.15), this yields

$$
\begin{aligned}
& \left\|\left[\left|P^{\prime} W\right|+\left|(P W)^{\prime}\right|\right]\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{-2}\right\|_{L_{\infty}\left[-a_{n 2}, a_{n 2}\right]} \\
& \quad \leqslant C_{9}\|P W\|_{L_{\infty}(\mathbb{R})} \frac{n}{a_{n}},
\end{aligned}
$$

$n \geqslant n_{1}, P \in \mathscr{P}_{n}$. Replacing n by $8 n$,

$$
\begin{align*}
& \left\|\left[\left|P^{\prime} W\right|+\left|(P W)^{\prime}\right|\right]\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{-2}\right\|_{L_{\infty}\left[-a_{4+}, a_{4 n}\right]} \\
& \quad \leqslant 8 C_{9}\|P W\|_{L_{\infty}(\mathbb{R})} \frac{n}{a_{n}}, \tag{5.18}
\end{align*}
$$

$n \geqslant n_{1}, P \in \mathscr{P}_{n}$. Now by (5.5) of Lemma 5.2,

$$
\begin{aligned}
& \left\|\left[\left|P^{\prime} W\right|+\left|(P W)^{\prime}\right|\right]\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{-2}\right\|_{L_{\infty}\left(|t| \geqslant a_{4 n}\right)} \\
& \quad \leqslant\left\|\left[2\left|P^{\prime} W\right|+\left|Q^{\prime}\right||P W|\right]\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{-2}\right\|_{L_{\infty}\left(|t| \geqslant a_{4 n}\right)} \\
& \quad \leqslant C_{10} n^{-2}\left\|P^{\prime} W\right\|_{L_{\infty}\left[-a_{4 n}, a_{4 n}\right]}+C_{10} n^{-2}\|P W\|_{L_{\infty}\left[-a_{4 n}, a_{4 n}\right]}
\end{aligned}
$$

(by (5.18))

$$
\begin{aligned}
& \leqslant C_{11} n^{-2} \frac{n}{a_{n}}\left[\log \left(2+Q^{\prime}\left(a_{4 n}\right)\right)\right]^{2}\|P W\|_{\left.L_{\infty}(8)\right)}+C_{10} n^{-2}\|P W\|_{L_{\infty}\left[-a_{44,}, a_{44}\right]} \\
& \leqslant C_{12}\|P W\|_{L_{\infty}(\mathbb{R})},
\end{aligned}
$$

in view of (4.7). Together with (5.18), this establishes (5.12) for $n \geqslant n_{1}$. The remaining finitely many n can be treated by a compactness argument. Finally we note that we used the continuity of $Q^{\prime \prime}$ only in applying Lemma 3.2 in [15, p. 208]. Furthermore, (5.12) does not involve $Q^{\prime \prime}$. When $Q^{\prime \prime}$ is not continuous at 0 , a straightforward argument yields (5.12) in the general case [15, pp. 221-222].
Next, we approximate the factor $\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{4}$ on $\left[-a_{\alpha n}, a_{\alpha n}\right]:$

Lemma 5.5. Let $W:=e^{-Q} \in \mathscr{W}_{1}$. Let $\beta, \Delta \in \mathbb{R}$ and $\alpha>0$. There exist polynomials R_{n} of degree at most o(n), $n \rightarrow \infty$, such that for $n \geqslant 1$, we have in $\left[-a_{\alpha n}, a_{\alpha n}\right]$

$$
\begin{equation*}
R_{n} \sim\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{A} \tag{5.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|R_{n}^{\prime}\right| \leqslant C(\log (n+1))^{3}\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{4} \tag{5.20}
\end{equation*}
$$

Proof. We note first that we may assume $Q^{\prime \prime}$ is continuous at 0 , since we are only looking for \sim in (5.19): If not, modify Q in [$-1,1$] to obtain a twice differentiable Q_{1} there. Now in \mathbb{R},

$$
\begin{align*}
\phi & :=\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{4} \\
& \sim\left[1+Q^{\prime 2}\right]^{\beta / 2}\left[\log \left(2+Q^{\prime 2}\right)\right]^{\Delta}=\exp (\psi) \tag{5.21}
\end{align*}
$$

where

$$
\begin{equation*}
\psi:=\frac{\beta}{2} \log \left(1+Q^{\prime 2}\right)+\Delta \log \log \left(2+Q^{\prime 2}\right) \tag{5.22}
\end{equation*}
$$

Let

$$
\begin{equation*}
f_{n}(t):=\psi\left(a_{2 \alpha n} t\right), \quad t \in[-1,1], n \geqslant 1 . \tag{5.23}
\end{equation*}
$$

Then by (4.7),

$$
\begin{equation*}
\left\|f_{n}\right\|_{L_{\infty}[-1,1]} \leqslant C_{1} \log \left(1+Q^{\prime}\left(a_{2 \alpha n}\right)^{2}\right) \leqslant C_{2} \log (n+1) \tag{5.24}
\end{equation*}
$$

Also

$$
\begin{aligned}
\left|f_{n}^{\prime}(t)\right|= & \left\lvert\, a_{2 \alpha n} \beta \frac{\left(Q^{\prime} Q^{\prime \prime}\right)\left(a_{2 \alpha n} t\right)}{1+Q^{\prime}\left(a_{2 \alpha n} t\right)^{2}}\right. \\
& \left.+a_{2 \alpha n} \Delta \frac{2\left(Q^{\prime \prime} Q^{\prime}\right)\left(a_{2 \alpha n} t\right)}{\left(\log \left(2+Q^{\prime}\left(a_{2 \alpha n} t\right)^{2}\right)\right)\left(2+Q^{\prime}\left(a_{2 \alpha n}\right)^{2}\right)} \right\rvert\, \\
\leqslant & C_{3} \frac{a_{2 \alpha n} Q^{\prime \prime}\left(a_{2 \alpha n} t\right)}{\left(1+Q^{\prime}\left(a_{2 \alpha n} t\right)^{2}\right)^{1 / 2}}
\end{aligned}
$$

Now for $1 \leqslant|s| \leqslant a_{2 \alpha n}$,

$$
\begin{aligned}
\left|Q^{\prime \prime}(s) / Q^{\prime}(s)\right| & =|T(s)-1| /|s| \\
& \leqslant\|T\|_{L_{\infty}\left[-a_{2 x n}, a_{2 x n}\right]} \leqslant C_{4}(\log (n+1))^{2} .
\end{aligned}
$$

Then (4.14) and the continuity of $Q^{\prime \prime}$ ensures that

$$
\begin{equation*}
\left\|f_{n}^{\prime}\right\|_{L_{\infty}[-1,1]} \leqslant C_{5} a_{n}(\log (n+1))^{2}, \quad n \geqslant 1 . \tag{5.25}
\end{equation*}
$$

Let φ_{n} denote the polynomial of degree $\left\langle C_{5} a_{n}(\log (n+1))^{2}\right\rangle$ of best
uniform approximation to f_{n} on $[-1,1]$. By Jackson's theorem on approximation by polynomials,

$$
\begin{equation*}
\left\|f_{n}-\varphi_{n}\right\|_{L_{\infty}[-1,1]} \leqslant C_{6}\left\|f_{n}^{\prime}\right\|_{L_{\infty}[-1,1]} / \text { degree }\left(\varphi_{n}\right) \leqslant C_{7} \tag{5.26}
\end{equation*}
$$

Now by standard results on derivatives of polynomials of best approximation [5, p. 84, pp. 10-11],

$$
\begin{aligned}
\max _{t \in[-1,1]}\left(1-t^{2}\right)^{1 / 2}\left|\varphi_{n}^{\prime}(t)\right| & \leqslant C_{8} \max _{t \in[-1,1]}\left(1-t^{2}\right)^{1 / 2}\left|f_{n}^{\prime}(t)\right| \\
& \leqslant C_{9} a_{n}(\log (n+1))^{2}
\end{aligned}
$$

Then for $|t| \leqslant a_{\alpha n} / a_{2 \alpha n}$,

$$
\begin{align*}
\left|\varphi_{n}^{\prime}(t)\right| & \leqslant C_{9} a_{n}(\log (n+1))^{2}\left(1-\left(a_{\alpha n} / a_{2 \alpha n}\right)^{2}\right)^{-1 / 2} \\
& \leqslant C_{10} a_{n}(\log (n+1))^{3} \tag{5.27}
\end{align*}
$$

by (4.13). Now let $\tau_{k}(u)$ denote the $(k+1)$ th partial sum of the Maclaurin series of $e^{u}, k \geqslant 1$. It is well known that

$$
\begin{equation*}
C_{11} \leqslant \tau_{k}(u) e^{-u} \leqslant C_{12}, \quad|u| \leqslant C_{13} k, k \geqslant 1 \tag{5.28}
\end{equation*}
$$

Let us note from (5.24) and (5.26) that

$$
\left\|\varphi_{n}\right\|_{L_{\infty}[-1,1]} \leqslant C_{14} \log (n+1)
$$

Then we can choose $k=k(n)=O(\log (n+1))$, such that if

$$
R_{n}(u):=\tau_{k(n)}\left(\varphi_{n}\left(u / a_{2 \alpha n}\right)\right),
$$

then in view of (5.28), for $u \in\left[-a_{\alpha n}, a_{\alpha n}\right]$,

$$
\begin{aligned}
R_{n}(u) & \sim \exp \left(\varphi_{n}\left(u / a_{2 \alpha n}\right)\right) \\
& \sim \exp \left(f_{n}\left(u / a_{2 \alpha n}\right)\right)=\exp (\psi(u)) \sim \phi(u)
\end{aligned}
$$

by (5.26) and (5.23). Furthermore, for $u \in\left[-a_{\alpha n}, a_{\alpha n}\right]$,

$$
\begin{aligned}
\left|R_{n}^{\prime}(u)\right| & =\left|\tau_{k(n)}^{\prime}\left(\varphi_{n}\left(u / a_{2 \alpha n}\right)\right)\right|\left|\varphi_{n}^{\prime}\left(u / a_{2 \alpha n}\right) a_{2 x n}^{-1}\right| \\
& =\left|\tau_{k(n)-1}\left(\varphi_{n}\left(u / a_{2 \alpha n}\right)\right)\right|\left|\varphi_{n}^{\prime}\left(u / a_{2 \alpha n}\right) a_{2 \alpha n}^{-1}\right| \\
& \sim \exp \left(\varphi_{n}\left(u / a_{2 \alpha n}\right)\right)\left|\varphi_{n}^{\prime}\left(u / a_{2 x n}\right) a_{2 \alpha n}^{-1}\right| \\
& \leqslant C_{15} \exp (\psi(u)) \frac{a_{n}}{a_{2 \alpha n}}(\log (n+1))^{3} \quad(\text { by }(5.27)) \\
& \leqslant C_{16} \phi(u)(\log (n+1))^{3},
\end{aligned}
$$

by (5.21) and (4.14). So we have (5.19) and (5.20).

Finally, the degree of R_{n} is $k(n)\left\langle C_{5} a_{n}(\log (n+1))^{2}\right\rangle$, which is $O\left(a_{n}(\log (n+1))^{3}\right)$ and hence $o(n)$ by (4.5).

Proof of Theorem 5.1. In view of Lemma 5.2 (cf. the proof of Lemma 5.4), it suffices to prove that

$$
\begin{gather*}
\left\|\left[\left|P^{\prime} W\right|+\left|(P W)^{\prime}\right|\right]\left[1+\left|Q^{\prime}\right|\right]^{\beta}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{-2}\right\|_{L_{\infty}\left[-a_{4 n}, a_{4 n}\right]} \\
\leqslant C_{1} \frac{n}{a_{n}}\left\|P W\left[1+\left|Q^{\prime}\right|\right]^{\beta}\right\|_{L_{\infty}(\mathbb{R})}, \quad P \in \mathscr{P}_{n}, n \geqslant 1 . \tag{5.29}
\end{gather*}
$$

So let $R_{n} \in \mathscr{P}_{n}, n \geqslant n_{1}$, be the polynomials of Lemma 5.5 with $\Delta=0$ and $\alpha=4$. Then in $\left[-a_{4 n}, a_{4 n}\right]$ for $P \in \mathscr{P}_{n}$,

$$
\begin{aligned}
& {\left[\left|P^{\prime} W\right|+\left|(P W)^{\prime}\right|\right]\left[1+\left|Q^{\prime}\right|\right]^{\beta} } \\
& \sim\left[\left|P^{\prime} W\right|+\left|(P W)^{\prime}\right|\right] R_{n} \\
&=\left|\left(P R_{n}\right)^{\prime} W-P R_{n}^{\prime} W\right|+\left|\left(P R_{n} W\right)^{\prime}-R_{n}^{\prime} P W\right| \\
& \leqslant\left|\left(P R_{n}\right)^{\prime} W\right|+\left|\left(P R_{n} W\right)^{\prime}\right|+2\left|R_{n}^{\prime}\right||P W| \\
& \leqslant C \frac{2 n}{a_{2 n}}\left\|P R_{n} W\right\|_{L_{\infty}(\mathbb{R})}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{2}+2\left|R_{n}^{\prime}\right||P W|
\end{aligned}
$$

by Lemmas 5.3 and 5.4. Of course if T is bounded, Lemma 5.3 shows that $\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{2}$ can be omitted. Since $P R_{n} \in \mathscr{P}_{2 n}$ [22],

$$
\begin{aligned}
\left\|P R_{n} W\right\|_{L_{\alpha}(\mathbb{R})} & =\left\|P R_{n} W\right\|_{L_{\infty}\left[-a_{2 n}, a_{2 n}\right]} \\
& \sim\left\|P W\left[1+\left|Q^{\prime}\right|\right]^{\beta}\right\|_{L_{\alpha}\left[-a_{2 n}, a_{2 n}\right]} .
\end{aligned}
$$

Then using the bound for R_{n}^{\prime} from Lemma 5.5, we have in $\left[-a_{4 n}, a_{4 n}\right]$ for $P \in \mathscr{P}_{n}$,

$$
\begin{aligned}
& {\left[\left|P^{\prime} W\right|+\left|(P W)^{\prime}\right|\right]\left[1+\left|Q^{\prime}\right|\right]^{\beta}} \\
& \qquad \leqslant \\
& \quad C \frac{n}{a_{n}}\left\|P W\left[1+\left|Q^{\prime}\right|\right]^{\beta}\right\|_{L_{x}\left[-a_{2 n}, a_{2 n}\right]}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{2} \\
& \quad+C(\log (n+1))^{3}|P W|\left[1+\left|Q^{\prime}\right|\right]^{\beta} .
\end{aligned}
$$

Since

$$
n / a_{n} \geqslant C_{1}(\log (n+1))^{3}, \quad n \geqslant 1
$$

we have (5.29) and the theorem.

6. Estimates for Christoffel Functions, and Consequences

In this section, we obtain upper and lower bounds for Christoffel functions, and apply these to spacing of the zeros of the orthogonal polynomials. The following lemma was proved in a weaker form in [19].

Lemma 6.1. Let $W \in \mathscr{W}_{1}$ and $\eta:=\eta(W)$ be as in (2.4). Let

$$
\begin{equation*}
\beta:=(1+\eta) /(2 \eta) . \tag{6.1}
\end{equation*}
$$

Then $\exists \varepsilon \in(0,1), n_{1} \geqslant 1$ and C, such that if

$$
\begin{equation*}
m:=m(n):=\varepsilon n / T\left(a_{n}\right)^{\beta}, n \geqslant n_{1}, \tag{6.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\lambda_{n}\left(W^{2}, x\right) W^{-2}(x) \leqslant C \frac{a_{n}}{n}\left[\frac{1}{n}+\left(1-\left(\frac{x}{a_{4 n}}\right)^{2}\right)^{1 / 2}\right] \tag{6.3}
\end{equation*}
$$

for

$$
\begin{equation*}
n \geqslant n_{1} \text { and }|x| \leqslant a_{m(n)} \tag{6.4}
\end{equation*}
$$

Proof. We adopt the old method of Freud [8]. By Lemma 5.2, for $n \geqslant n_{1}$ say,

$$
\begin{equation*}
\lambda_{n}\left(W^{2}, x\right) W^{-2}(x) \leqslant 2 \inf _{P \in \mathscr{P}_{n-1}} \int_{-a_{4 n}}^{a_{4 n}}(P W)^{2}(t) d t /(P W)^{2}(x) \tag{6.5}
\end{equation*}
$$

Define for a fixed x the linear polynomial in t,

$$
\psi_{x}(t):=Q(x)+(t-x) Q^{\prime}(x)
$$

If $Q^{\prime \prime}$ exists throughout \mathbb{R}, we see that by convexity,

$$
\psi_{x}(t)-Q(t)=-\frac{1}{2} Q^{\prime \prime}(\xi)(t-x)^{2} \leqslant 0, \quad t \in \mathbb{R}
$$

As the left-hand side does not involve $Q^{\prime \prime}$, a continuity argument establishes this even when $Q^{\prime \prime}(0)$ does not exist. Hence

$$
\begin{equation*}
\exp \left(\psi_{x}(t)\right) W(t) \leqslant 1, \quad t \in \mathbb{R} \tag{6.6}
\end{equation*}
$$

Next, for $|t| \leqslant a_{4 n}$ and $|x| \leqslant a_{m(n)}$,

$$
\begin{aligned}
\left|\psi_{x}(t)\right| & \leqslant Q\left(a_{m(n)}\right)+2 \frac{a_{4 n}}{a_{m(n)}} a_{m(n)} Q^{\prime}\left(a_{m(n)}\right) \\
& \leqslant C_{1} m(n)+C_{2}(n / m(n))^{1 /(1+\eta)} m(n) T\left(a_{m(n)}\right)^{1 / 2}
\end{aligned}
$$

(by (4.2), (4.6) and (4.7))

$$
\begin{align*}
& \leqslant C_{3} \varepsilon n+C_{3} \varepsilon^{-1 /(1+\eta)+1} T\left(a_{n}\right)^{\beta /(1+\eta)} n T\left(a_{n}\right)^{1 / 2-\beta} \\
& =C_{3} n\left[\varepsilon+\varepsilon^{\eta /(1+\eta)}\right] \tag{6.7}
\end{align*}
$$

by the choice (6.1) of β. Here $C_{3} \neq C_{3}(\varepsilon, n, x, t)$.
Next, as in the proof of Lemma 5.5, let $\tau_{k}(u)$ denote the $(k+1)$ th partial sum of e^{u}. Define

$$
S_{x, n}(t):=\tau_{\langle n / 2\rangle}\left(\psi_{x}(t)\right) .
$$

From (5.28) and (6.7), if ε is small enough,

$$
S_{x, n}(t) \sim \exp \left(\psi_{x}(t)\right), \quad|t| \leqslant a_{4 n},|x| \leqslant a_{m(n)}
$$

Then by (6.6),

$$
\begin{equation*}
0<S_{x, n}(t) W(t) \leqslant C_{4}, \quad|t| \leqslant a_{4 n},|x| \leqslant a_{m(n)} \tag{6.8}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
S_{x, n}(x) W(x) \sim \exp \left(\psi_{x}(x)\right) W(x)=1, \quad|x| \leqslant a_{m(n)} \tag{6.9}
\end{equation*}
$$

Substituting $P(t):=S_{x, n}(t) R(t)$ in (6.5), where $R \in \mathscr{P}_{\langle n / 2\rangle-1}$ is arbitrary, yields

$$
\begin{aligned}
\lambda_{n}\left(W^{2}, x\right) & W^{-2}(x) \\
& \leqslant 2 \inf _{R \in \mathscr{\mathscr { R }}\langle n / 2\rangle-1} \int_{-a_{4 n}}^{a_{4 n}}\left(R S_{x, n} W\right)^{2}(t) d t /\left(R S_{x, n} W\right)^{2}(x) \\
& \leqslant C_{5} \inf _{R \in \mathscr{P}\langle n / 2\rangle-1} \int_{-a_{4 n}}^{a_{4 n}} R^{2}(t) d t / R^{2}(x), \\
& \leqslant C_{5} a_{4 n} \lambda_{\langle n / 2\rangle}\left(w, x / a_{4 n}\right),
\end{aligned}
$$

where w is the classical Legendre weight on $[-1,1]$. By classical estimates [30],

$$
\lambda_{l}(w ; s) \leqslant C_{6} \frac{1}{l}\left[\frac{1}{l}+\left(1-s^{2}\right)^{1 / 2}\right], \quad s \in[-1,1], l \geqslant 1 .
$$

Hence the result.
Lemma 6.2. Let $W \in \mathscr{W}_{1}$. For $n \geqslant 1$,

$$
\begin{equation*}
\sum_{j=1}^{n} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left(2+x_{j n}^{2}\right)^{-1 / 2}\left(\log \left(2+x_{j n}^{2}\right)\right)^{-2} \leqslant C \tag{6.10}
\end{equation*}
$$

Proof. See [19, Lemma 6.2].

Lemma 6.3. Let $W \in \mathscr{W}_{1}$ and $\eta:=\eta(W)$ be as in (2.4). Define β and $m(n)$ as in (6.1) and (6.2). Then

$$
\begin{equation*}
\left|x_{j n}\right|,\left|x_{j+1, n}\right| \leqslant a_{m(n)} \tag{6.11}
\end{equation*}
$$

implies

$$
\begin{equation*}
\left|x_{j n}-x_{j+1, n}\right| \leqslant C \frac{a_{n}}{n}\left(\frac{1}{n}+\left(1-\left[\frac{\min \left\{\left|x_{j n}\right|,\left|x_{j+1, n}\right|\right\}}{a_{4 n}}\right]^{2}\right)^{1 / 2}\right) \tag{6.12}
\end{equation*}
$$

Proof. We use the method of Freud [7, pp. 293-294]. Choose D, $E \in \mathbb{R}$ such that

$$
\exp \left(D x_{j n}+E\right) W^{2}\left(x_{j n}\right)=1=\exp \left(D x_{j+1, n}+E\right) W^{2}\left(x_{j+1, n}\right)
$$

By convexity of Q,

$$
\begin{equation*}
\exp (D t+E) W^{2}(t)=\exp (D t+E-2 Q(t)) \geqslant 1, \quad t \in\left[x_{j+1, n}, x_{j n}\right] \tag{6.13}
\end{equation*}
$$

Also then by the Markov-Posse-Stieltjes inequality,

$$
\begin{aligned}
x_{j n}-x_{j+1, n} & \leqslant \int_{x_{j+1, n}}^{x_{j n}} \exp (D t+E) W^{2}(t) d t \\
& \leqslant \lambda_{j n} \exp \left(D x_{j n}+E\right)+\lambda_{j+1, n} \exp \left(D x_{j+1, n}+E\right) \\
& =\lambda_{j n} W^{-2}\left(x_{j n}\right)+\lambda_{j+1, n} W^{-2}\left(x_{j+1, n}\right) .
\end{aligned}
$$

Now apply the bounds of Lemma 6.1.
Lemma 6.4. Let $W \in \mathscr{W}_{1}$ and $\eta:=\eta(W)$ be as in (2.4). Let

$$
\begin{equation*}
\Delta:=(1+\eta) / \eta . \tag{6.14}
\end{equation*}
$$

Let ε_{0} be small enough, and let

$$
\begin{equation*}
l:=l(n):=\varepsilon_{0} n / T\left(a_{n}\right)^{A}, \quad n \geqslant 1 . \tag{6.15}
\end{equation*}
$$

Then $\exists n_{1}$ such that for $n \geqslant n_{1}, p_{n}(x)=p_{n}\left(W^{2} ; x\right)$ has at least one zero in $J_{n}:=\left[a_{l(n) / 2}, a_{l(n)}\right]$.

Proof. We use an argument of W. Hahn as adapted by Freud [7]. Suppose on the contrary that p_{n} has no zeros in J_{n}. Let

$$
\psi_{n}(x):=T_{\langle n / 2\rangle-1}^{2}\left(1+\left(a_{l / 2}-x\right)\left(x-a_{l}\right) /\left(4 a_{5 n}^{2}\right)\right)
$$

Then for $x \in\left[-a_{5 n}, a_{5 n}\right] \backslash J_{n}$ and $n \geqslant n_{1}$,

$$
0 \leqslant 1+\left(a_{t / 2}-x\right)\left(x-a_{i}\right) /\left(4 a_{5 n}^{2}\right) \leqslant 1,
$$

so $0 \leqslant \psi_{n}(x) \leqslant 1$. By Lemma 4.3(ii) and our hypothesis, all zeros lie in $\left[-a_{5 n}, a_{5 n}\right] \backslash J_{n}$ for $n \geqslant n_{1}$, so

$$
\begin{equation*}
\sum_{j=1}^{n} \lambda_{j n} \psi_{n}\left(x_{j n}\right) \leqslant \sum_{j=1}^{n} \lambda_{j n}=\int_{-\infty}^{\infty} W^{2}(t) d t \tag{6.16}
\end{equation*}
$$

Also, by the Gauss quadrature formula,

$$
\begin{equation*}
\sum_{j=1}^{n} \lambda_{j n} \psi_{n}\left(x_{j n}\right)=\int_{-\infty}^{\infty} \psi_{n}(t) W^{2}(t) d t \geqslant \int_{K_{n}} \psi_{n}(t) W^{2}(t) d t \tag{6.17}
\end{equation*}
$$

where $K_{n}:=\left[a_{2 / / 3}, a_{3 / 4}\right]$. Now for $t \in K_{n}$,

$$
\begin{aligned}
1+\left(a_{l}-t\right)\left(t-a_{l / 2}\right) /\left(4 a_{5 n}^{2}\right) & \geqslant 1+\left(a_{l}-a_{3 l} / 4\right)\left(a_{2 l / 3}-a_{l / 2}\right) /\left(4 a_{5 n}^{2}\right) \\
& \geqslant 1+C_{1}\left(a_{l / 2} / a_{5 n}\right)^{2} T\left(a_{n}\right)^{-2}
\end{aligned}
$$

(by (4.12) and as $n \geqslant l(n), n \geqslant n_{1}$)

$$
\geqslant 1+C_{2} \varepsilon_{0}^{2 /(1+\eta)} T\left(a_{n}\right)^{-2 \Delta /(1+\eta)-2}
$$

(by (4.6) and the definition of $l=l(n)$). Next, using the inequality

$$
\begin{aligned}
T_{\langle n / 2\rangle-1}(1+s) & \geqslant \frac{1}{2}\left(1+(2 s)^{1 / 2}\right)^{\langle n / 2\rangle-1}, \quad s \geqslant 0 \\
& \geqslant \exp \left(C_{3} n s^{1 / 2}\right)
\end{aligned}
$$

we obtain for $t \in K_{n}$, and by the choice of Δ,

$$
\psi_{n}(t) \geqslant \exp \left(C_{4} \varepsilon_{0}^{1 /(1+\eta)} n T\left(a_{n}\right)^{-4}\right)
$$

Furthermore for $t \in K_{n}$, (4.2) yields

$$
\begin{aligned}
W(t) & \geqslant \exp \left(-Q\left(a_{3 / 4}\right)\right) \geqslant \exp \left(-C_{5} l\right) \\
& =\exp \left(-C_{5} \varepsilon_{0} n T\left(a_{n}\right)^{-4}\right) .
\end{aligned}
$$

Then for $t \in K_{n}$,

$$
\begin{aligned}
\psi_{n}(t) W^{2}(t) & \geqslant \exp \left(n T\left(a_{n}\right)^{-\Delta}\left\{C_{4} \varepsilon_{0}^{1 /(1+\eta)}-2 C_{5} \varepsilon_{0}\right\}\right) \\
& \geqslant \exp \left(C_{6} n(\log n)^{-24}\right)
\end{aligned}
$$

where $C_{6}=C_{6}\left(\varepsilon_{0}\right)$, if ε_{0} is small enough. Then as the length of K_{n} is

$$
\begin{align*}
a_{3 / 4}-a_{2 l / 3} & \geqslant C_{7} a_{3 l / 4} T\left(a_{3 l / 4}\right)^{-1} \tag{4.12}\\
& \geqslant C_{8}(\log n)^{-2}
\end{align*}
$$

$n \geqslant n_{1}$, (6.17) contradicts (6.16).

From Lemmas 6.3 and 6.4, we deduce
Theorem 6.5. Let $W \in \mathscr{W}_{1}$ and $l:=l(n), n \geqslant 1$, be defined by (6.14) to (6.15). Then $\exists n_{1}$ and $C_{1}>0$ such that for $n \geqslant n_{1}$, each interval of length $\geqslant C_{1} a_{n} / n$ in $\left[-a_{l(n)}, a_{l(n)}\right]$ contains at least one zero of p_{n}.

We now estimate $\left(\left|Q^{\prime}(x)\right|+1\right) /\left(\left|Q^{\prime}\left(x_{j n}\right)\right|+1\right)$ in $\left[x_{j+1, n}, x_{j n}\right]$:
Lemma 6.6. Let $W \in \mathscr{W}_{1}$. There exist n_{1} and C such that uniformly for $1 \leqslant j \leqslant n$ and $n \geqslant n_{1}$,

$$
\begin{equation*}
\max _{x \in\left[x_{j+1, n, x}, x_{j-1, n}\right]}\left\{\left|\frac{Q^{\prime}(x) \mid+1}{Q^{\prime}\left(x_{j n}\right) \mid+1}\right|\right\}^{ \pm 1} \leqslant C\left(\log \left(2+\left|Q^{\prime}(x)\right| j\right)^{1+2 \Delta}\right. \tag{6.18}
\end{equation*}
$$

where we set $x_{0 n}:=a_{8 n}$ and $x_{n+1, n}:=-a_{8 n}$, and Δ is given by (6.14).
Proof. Let $l=l(n)$ be given by (6.15), $n \geqslant 1$. Let $I_{j n}:=\left[x_{j+1, n}, x_{j-1, n}\right]$. If first $I_{j n} \subset[-2,2]$, then (6.18) follows directly. Suppose next $I_{j n} \subset\left[-a_{l},-1\right] \cup\left[1, a_{l}\right]$. Then

$$
\begin{aligned}
\left|\log \left[\frac{Q^{\prime}(x)^{2}+1}{Q^{\prime}\left(x_{j n}\right)^{2}+1}\right]\right| & =\left|\int_{x_{j n}}^{x} \frac{2 Q^{\prime \prime}(t) Q^{\prime}(t)}{Q^{\prime}(t)^{2}+1} d t\right| \\
& \leqslant 2\left(x_{j-1, n}-x_{j+1, n}\right) \max _{i \in\left[x_{\left.j+1, n, x_{j-1, n]}\right]}\left|Q^{\prime \prime}(t) / Q^{\prime}(t)\right|\right.} \\
& \leqslant C_{1} \frac{a_{n}}{n} \max _{t \in\left[x_{\left.j+1, n, x_{j-1, n}\right]}|(T(t)-1) / t|\right.} \\
& \leqslant C_{2} \frac{a_{n}}{n} T\left(a_{5 n}\right) \leqslant C_{3} \frac{a_{n}}{n}(\log n)^{2}=o(1),
\end{aligned}
$$

by (4.9) and (4.5). Here we have also used Theorem 6.5 to bound $x_{j-1, n}-x_{j+1, n}$ for $n \geqslant n_{1}$. Together with our considerations about $[-2,2]$, this yields (6.18) for $n \geqslant n_{1}$ whenever $I_{j n} \subset\left[-a_{l}, a_{l}\right]$.

Next, we note that for $n \geqslant n_{1}, I_{j n}$ cannot contain the interval $\left[a_{l / 2}, a_{l}\right]$ or $\left[-a_{l},-a_{l / 2}\right]$, since

$$
\begin{aligned}
a_{l}-a_{l / 2} & \geqslant C_{4} a_{l} T\left(a_{l}\right)^{-1} \quad(\text { by }(4.12)) \\
& \geqslant C_{5}(\log n)^{-2} \geqslant 5 C_{1} a_{n} / n
\end{aligned}
$$

by (4.9) and (4.5), where C_{1} is as in Theorem 6.5: So $\left[a_{l / 2}, a_{l}\right]$ certainly contains more than 5 zeros of p_{n} for n large enough. Thus if $I_{j n}$ is not contained in $\left[-a_{l}, a_{l}\right]$, then for $n \geqslant n_{1}$, either

$$
I_{j n} \subset\left[a_{l / 2}, \infty\right) \quad \text { or } \quad I_{j n} \subset\left(-\infty,-a_{l / 2}\right]
$$

Suppose the former. Then since $x_{1 n} \leqslant a_{5 n}$ and $x_{0 n}=a_{8 n}$,

$$
\left|Q^{\prime}\left(x_{j n}\right)\right| \leqslant Q^{\prime}\left(a_{8 n}\right) \leqslant C_{6} n(\log n) / a_{n}
$$

by (4.7). Further, for $x \in I_{j n}$, (4.7) shows that

$$
\left|Q^{\prime}(x)\right| \geqslant Q^{\prime}\left(a_{l / 2}\right) \geqslant(l / 2) / a_{l / 2}
$$

so

$$
\begin{aligned}
\frac{\left|Q^{\prime}\left(x_{j n}\right)\right|+1}{\left|Q^{\prime}(x)\right|+1} & \leqslant C_{7} \frac{n}{l}(\log n) \frac{a_{l / 2}}{a_{n}} \leqslant C_{7} \frac{n}{l}(\log n) \\
& \leqslant C_{8} T\left(a_{n}\right)^{4}(\log n) \quad(\text { by }(6.15)) \\
& \leqslant C_{9}(\log n)^{1+2 A},
\end{aligned}
$$

by (4.9). Furthermore, in view of (4.8),

$$
\log Q^{\prime}(x) \geqslant \log Q^{\prime}\left(a_{l / 2}\right) \geqslant C_{10} \log l \geqslant C_{11} \log n .
$$

So

$$
\frac{\left|Q^{\prime}\left(x_{j n}\right)\right|+1}{\left|Q^{\prime}(x)\right|+1} \leqslant C_{12}\left(\log \left(2+Q^{\prime}(x)\right)\right)^{1+24}
$$

If we reverse the roles of $x_{j n}$ and x, we obtain the same bound for the reciprocal of the last left hand side. Similarly if $I_{j n} \subset\left(-\infty,-a_{l / 2}\right]$.

By very similar, but easier means, we can prove
Lemma 6.7. Let $W \in \mathscr{W}_{1}$. There exist n_{1} and C such that uniformly for $1 \leqslant j \leqslant n$ and $n \geqslant n_{1}$,

$$
\begin{equation*}
\max _{x \in\left[x_{j+1, n}, x_{j-1, n}\right]}\left\{\frac{|x|+1}{\left|x_{j n}\right|+1}\right\}^{ \pm 1} \leqslant C\left(\log \left(2+\left|Q^{\prime}(x)\right|\right)\right)^{1 / \eta} \tag{6.19}
\end{equation*}
$$

Here $x_{0 n}:=a_{8 n}$ and $x_{n+1, n}:=-a_{8 n}$.
We remark that at least when T is bounded, the powers of $\log \left(2+\left|Q^{\prime}(x)\right|\right)$ can be removed from (6.18) and (6.19). In fact, even when T is unbounded, only slightly stronger regularity assumptions still allow us to remove these powers. Next, we bound the Christoffel numbers.

Lemma 6.8. Let $W \in \mathscr{W}_{1}$ and β be given by (6.1). Then for $n \geqslant 1$ and some $C>0$,

$$
\begin{align*}
& \max _{1 \leqslant j \leqslant n} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left[1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right]^{-1}\left[1+\left|x_{j n}\right|\right]^{-1}\left[\log \left(2+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)\right]^{-2(1+\beta)} \\
& \quad \leqslant C a_{n} / n \tag{6.20}
\end{align*}
$$

Proof. From Lemma 6.1, with $m=m(n)$ there

$$
\left|x_{j n}\right| \leqslant a_{m}
$$

implies

$$
\begin{align*}
\lambda_{j n} W^{-2}\left(x_{j n}\right) & \leqslant C_{1} \frac{a_{n}}{n} \\
& \leqslant C_{2} \frac{a_{n}}{n}\left[1+\mid Q^{\prime}\left(x_{j n}\right)\right]\left[1+\left|x_{j n}\right|\right]\left[\log \left(2+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)\right]^{2(1+\beta)} \tag{6.21}
\end{align*}
$$

Next, if $\left|x_{j n}\right| \geqslant a_{m}$, then

$$
\begin{align*}
\left|Q^{\prime}\left(x_{j n}\right)\right| & \geqslant Q^{\prime}\left(a_{m}\right) \geqslant m / a_{m} \tag{4.7}\\
& \geqslant \varepsilon n T\left(a_{n}\right)^{-\beta} / a_{n} \tag{6.2}\\
& \geqslant C_{1} n /\left(a_{n}(\log n)^{2 \beta}\right), \tag{6.22}
\end{align*}
$$

by (4.9). Then

$$
\log \left(2+\left|Q^{\prime}\left(x_{j n}\right)\right|\right) \geqslant C_{2} \log n
$$

$n \geqslant n_{1}$, and by (4.3),

$$
\log \left(2+\left|Q^{\prime}\left(x_{j n}\right)\right|\right) \geqslant C_{3} \log \left(2+x_{j n}^{2}\right)
$$

Then for such j, Lemma 6.2, and then (6.22), yield

$$
\begin{aligned}
\lambda_{j n} W^{-2}\left(x_{j n}\right) & \leqslant C_{4}\left(2+x_{j n}^{2}\right)^{1 / 2}\left(\log \left(2+x_{j n}^{2}\right)\right)^{2} \\
& \leqslant C_{5} \frac{a_{n}}{n}\left|Q^{\prime}\left(x_{j n}\right)\right|\left(\log \left(2+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)\right)^{2 \beta}\left(2+x_{j n}^{2}\right)^{1 / 2}\left(\log \left(2+x_{j n}^{2}\right)\right)^{2} \\
& \leqslant C_{6} \frac{a_{n}}{n}\left[1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right]\left[\log \left(2+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)\right]^{2+2 \beta}\left[1+\left|x_{j n}\right|\right] .
\end{aligned}
$$

Together with (6.21), we have proved (6.20).
Next, we derive rather weak lower bounds for λ_{n} :
Lemma 6.9. Let $W \in \mathscr{W}_{2}$ and $\sigma:=\sigma(W)$. Then

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} \lambda_{n}^{-1}\left(W^{2}, x\right) W^{2}(x)\left[1+\left|Q^{\prime}(x)\right|\right]^{-2 \sigma}\left[\log \left(2+\left|Q^{\prime}(x)\right|\right)\right]^{-2} \leqslant C_{1} \frac{n}{a_{n}} \tag{6.23}
\end{equation*}
$$

Proof. From the relation

$$
\lambda_{n}^{-1}\left(W^{2}, x\right)=\rho_{n}\left(p_{n}^{\prime}(x) p_{n-1}(x)-p_{n-1}^{\prime}(x) p_{n}(x)\right)
$$

we obtain

$$
\begin{aligned}
& \sup _{x \in \mathbb{R}} \lambda_{n}^{-1}\left(W^{2}, x\right) W^{2}(x)\left[1+\left|Q^{\prime}(x)\right|\right]^{-2 \sigma}\left[\log \left(2+\left|Q^{\prime}(x)\right|\right)\right]^{-2} \\
& \leqslant
\end{aligned} \begin{aligned}
& \rho_{n} \sum_{k=0}^{1}\left\|p_{n-k}^{\prime} W\left[1+\left|Q^{\prime}\right|\right]^{-\sigma}\left[\log \left(2+\left|Q^{\prime}\right|\right)\right]^{-2}\right\|_{L_{\infty}(\mathbb{R})} \\
& \quad \times\left\|p_{n-1+k} W\left[1+\left|Q^{\prime}\right|\right]^{-\sigma}\right\|_{L_{\infty}(\mathbb{R})} \\
& \leqslant \\
& \quad a_{5 n} \sum_{k=0}^{1} C_{2} \frac{n}{a_{n}}\left\|p_{n-k} W\left[1+\left|Q^{\prime}\right|\right]^{-\sigma}\right\|_{L_{\infty}(\mathbb{R})} \\
& \quad \times\left\|p_{n-1+k} W\left[1+\left|Q^{\prime}\right|\right]^{-\sigma}\right\|_{L_{\infty}(\mathbb{R})}
\end{aligned}
$$

(by (4.16) and Theorem 5.1)

$$
\leqslant C_{3} n / a_{n}
$$

by (2.9) and (4.6).
We remark that results in $[14,16]$ imply better bounds for λ_{n}^{-1} for Erdös weights. For Freud weights, without any additional conditions, we prove the following lemma. The method will be used elsewhere for other purposes.

Lemma 6.10. Let $W \in \mathscr{W}_{1}$ and assume that T is bounded. Then

$$
\begin{equation*}
\sup _{x \in \mathbb{B}} \lambda_{n}^{-1}\left(W^{2}, x\right) W^{2}(x) \leqslant C_{1} \frac{n}{a_{n}} \tag{6.24}
\end{equation*}
$$

Proof. The bound (6.24) is a straightforward consequence of the Markov-Bernstein inequalities in [12], as stated in (5.6) above. For any $P \in \mathscr{P}_{n-1}$, choose $\xi \in \mathbb{R}$ such that

$$
|(P W)(\xi)|=\|P W\|_{L_{x}(\mathbb{R})}
$$

Let $0<\varepsilon<1$. Now if $|y-\xi| \leqslant \varepsilon a_{n} / n$, there exists z between ξ and y such that

$$
\begin{aligned}
|(P W)(y)| & =\left|(P W)(\xi)+(P W)^{\prime}(z)(y-\xi)\right| \\
& \geqslant|(P W)(\xi)|-\left|(P W)^{\prime}(z)\right| \varepsilon a_{n} / n \\
& \geqslant\|P W\|_{L_{x}(\mathbb{R})}[1-C \varepsilon],
\end{aligned}
$$

where C is as in (5.6) and $C \neq C(n, P)$. Choosing $\varepsilon=1 /(2 C)$ yields

$$
|(P W)(y)| \geqslant\|P W\|_{E_{\infty}(\mathbb{R})} / 2,|y-\xi| \leqslant \varepsilon a_{n} / n
$$

Then for $x \in \mathbb{R}$,

$$
\begin{aligned}
\int_{-\infty}^{\infty} & (P W)^{2}(y) d y /(P W)^{2}(x) \\
& \geqslant \int_{\zeta-\varepsilon a_{n} / n}^{\zeta+\varepsilon a_{n} / n}\|P W\|_{L_{\infty}(\mathbb{R})}^{2} / 4 d t /(P W)^{2}(x) \\
& \geqslant \varepsilon a_{n} /(2 n) .
\end{aligned}
$$

Thus

$$
\lambda_{n}\left(W^{2}, x\right) W^{-2}(x) \geqslant \varepsilon a_{n} /(2 n) \quad \text { for all } \quad x \in \mathbb{R}
$$

We now deduce lower bounds for the spacing of the zeros:
Lemma 6.11. Let $W \in \mathscr{W}_{2}$ and $\sigma:=\sigma(W)$. Then uniformly for $2 \leqslant j \leqslant n-1, n \geqslant n_{1}$,

$$
\begin{equation*}
x_{j-1, n}-x_{j+1, n} \geqslant C \frac{a_{n}}{n}\left[1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right]^{-2 \sigma}\left[\log \left(2+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)\right]^{-2} \tag{6.25}
\end{equation*}
$$

If T is bounded, we have uniformly for $2 \leqslant j \leqslant n-1, n \geqslant n_{1}$,

$$
\begin{equation*}
x_{j-1, n}-x_{j+1, n} \geqslant C \frac{a_{n}}{n} \tag{6.26}
\end{equation*}
$$

Proof. We use the Markov-Posse-Stieltjes inequality in the form given in [11, p. 89, Lemma 3.2]. Suppose first $x_{j+1, n}>0$ and G is the entire function of Lemma 3.2 above. Setting $x_{0 n}:=\infty$, we have by [11, p. 89],

$$
\begin{aligned}
\lambda_{j n} G\left(x_{j n}\right) & =\frac{1}{2}\left[\sum_{k:\left|x_{k n}\right|<x_{j-1, n}} \lambda_{k n} G\left(x_{k n}\right)-\sum_{k:\left|x_{k n}\right|<x_{j n}} \lambda_{k n} G\left(x_{k n}\right)\right] \\
& \leqslant \frac{1}{2}\left[\int_{-x_{j-1, n}}^{x_{j-1, n}}-\int_{-x_{j+1, n}}^{x_{j+1, n}}\right] G(t) W^{2}(t) d t \\
& =\int_{x_{j+1, n}}^{x_{j-1, n}} G(t) W^{2}(t) d t .
\end{aligned}
$$

By Lemma 3.2 above, we obtain

$$
x_{j-1, n}-x_{j+1, n} \geqslant C_{1} \lambda_{j n} W^{-2}\left(x_{j n}\right)
$$

Then (6.25) and (6.26) follow respectively from the bounds of Lemma 6.9 and 6.10. By symmetry, the same inequality holds if $x_{j-1, n}<0$.

Finally, suppose $x_{j+1, n} \leqslant 0$ and $x_{j-1, n} \geqslant 0$. Then in view of Theorem 6.5, for $n \geqslant n_{1}$, both are contained in $[-1,1]$. By the classical Markov-Stieltjes inequality,

$$
\lambda_{j n} \leqslant \int_{x_{j+1, n}}^{x_{j-1, n}} W^{2}(t) d t \leqslant C_{3}\left(x_{j-1, n}-x_{j+1, n}\right)
$$

Applying Lemmas 6.9 and 6.10 again, and the fact that W^{-2} is bounded in $[-1,1]$, we obtain (6.25) and (6.26) for all $2 \leqslant j \leqslant n-1$.

7. Proofs of the Theorems

In this section, we prove slight improvements of Theorem 2.3 and its corollaries.

Lemma 7.1. Let $W \in \mathscr{W}_{2}$ and $\sigma:=\sigma(W)$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy

$$
\begin{equation*}
A_{1}:=\sup _{x \in \mathbb{R}}|f(x)| W^{2}(x)\left(1+\left|Q^{\prime}(x)\right|\right)^{2 \sigma+1+\varepsilon}(1+|x|)<\infty, \tag{7.1}
\end{equation*}
$$

for some $\varepsilon>0$. Let

$$
\begin{equation*}
v_{n}(x):=\frac{a_{n}^{2}}{n} \sum_{j=1}^{n} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left(\frac{p_{n}(x)}{x-x_{j n}}\right)^{2} \tag{7.2}
\end{equation*}
$$

$n \geqslant 1, x \in \mathbb{R}$. Then for $x \in \mathbb{R}$ and $n \geqslant 1$,

$$
\begin{equation*}
\left|Y_{n}\left(W^{2}, f, x\right)\right| \leqslant C A_{1} v_{n}(x) \tag{7.3}
\end{equation*}
$$

where $C \neq C(n, f, x)$ but $C=C(W, \varepsilon)$.
Proof. First note that from the representation (1.27), and from (2.9), (4.16), and (4.6), for $x \in \mathbb{R}, n \geqslant 1$, and $1 \leqslant j \leqslant n$,

$$
\begin{equation*}
\left|l_{j n}(x)\right| \leqslant C_{1} \lambda_{j n} a_{n}^{1 / 2} W^{-1}\left(x_{j n}\right)\left[1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right]^{\sigma}\left|\frac{p_{n}(x)}{x-x_{j n}}\right| \tag{7.4}
\end{equation*}
$$

Then

$$
\begin{align*}
\left|Y_{n}\left(W^{2}, f, x\right)\right| & \leqslant \sum_{j=1}^{n}\left|f\left(x_{j n}\right)\right| l_{j n}^{2}(x) \\
& \leqslant C_{1}^{2} a_{n} \sum_{j=1}^{n} \lambda_{j n}^{2} W^{-2}\left(x_{j n}\right)\left|f\left(x_{j n}\right)\right|\left[1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right]^{2 \sigma}\left(\frac{p_{n}(x)}{x-x_{j n}}\right)^{2} \tag{7.5}
\end{align*}
$$

Now by Lemma 6.8 and (7.1),

$$
\begin{aligned}
& \lambda_{j n}\left|f\left(x_{j n}\right)\right|\left[1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right]^{2 \sigma} \\
& \quad \leqslant \\
& \quad C_{2} \frac{a_{n}}{n}\left|f\left(x_{j n}\right)\right| W^{2}\left(x_{j n}\right)\left[1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right]^{2 \sigma+1} \\
& \quad \times\left[1+\left|x_{j n}\right|\right]\left[\log \left(2+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)\right]^{2(1+\beta)} \\
& \quad \leqslant C_{3} \frac{a_{n}}{n} A_{1}
\end{aligned}
$$

Substituting into (7.5) yields (7.3).
Next, we estimate a term that enables us to compare H_{n}, \hat{H}_{n}, and H_{n}^{*} to Y_{n} :

Lemma 7.2. Let $W \in \mathscr{W}_{2}$ and $\sigma:=\sigma(W)$. Let $\left\{e_{j n}\right\}_{j, n}$ satisfy

$$
\begin{equation*}
B_{1}:=\sup _{\substack{1 \leqslant j \leqslant n \\ n \geqslant 1}}\left|e_{j n}\right| W^{2}\left(x_{j n}\right)\left(1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)^{2 \sigma+1+\delta}\left(1+\left|x_{j n}\right|\right)^{2}<\infty \tag{7.6}
\end{equation*}
$$

some $\delta>0$. Then for $x \in \mathbb{R}$ and $n \geqslant 1$,

$$
\begin{align*}
& \left(1+\left|Q^{\prime}(x)\right|\right)^{-\sigma} \sum_{j=1}^{n}\left|e_{j n}\right|\left|x-x_{j n}\right| l_{j n}^{2}(x) W(x) \\
& \quad \leqslant C B_{1}\left(\frac{a_{n}}{n} v_{n}(x)\right)^{1 / 2} \tag{7.7}
\end{align*}
$$

where $C \neq C\left(n,\left\{e_{j n}\right\}, x\right)$ but $C=C(W, \delta)$ and where $v_{n}(x)$ is defined by (7.2).

Proof. By the Cauchy-Schwarz inequality,

$$
\begin{align*}
& \sum_{j=1}^{n}\left|e_{j n}\right|\left|x-x_{j n}\right| l_{j n}^{2}(x) \\
& \quad \leqslant\left(\sum_{j=1}^{n}\left|e_{j n}\right|\left(x-x_{j n}\right)^{2} l_{j n}^{2}(x)\right)^{1 / 2}\left(\sum_{j=1}^{n}\left|e_{j n}\right| l_{j n}^{2}(x)\right)^{1 / 2} \tag{7.8}
\end{align*}
$$

If we define $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{n}\left(x_{j n}\right):=\left|e_{j n}\right|, \quad 1 \leqslant j \leqslant n \text { and } n \geqslant 1
$$

and $f_{n}(x)=0$ otherwise, then the exact argument of the previous lemma shows that

$$
\begin{align*}
\sum_{j=1}^{n}\left|e_{j n}\right| l_{j n}^{2}(x) & =Y_{n}\left(W^{2}, f_{n}, x\right) \\
& \leqslant C_{1}\left\{\sup _{\substack{1 \leqslant j \leqslant n \\
n \geqslant 1}}\left|e_{j n}\right| W^{2}\left(x_{j n}\right)\left(1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)^{2 \sigma+1+\delta}\left(1+\left|x_{j n}\right|\right)\right\} v_{n}(x) \\
& \leqslant C_{1} B_{1} v_{n}(x) \tag{7.9}
\end{align*}
$$

where $C_{1} \neq C_{1}\left(n,\left\{e_{j n}\right\}, x\right)$. Furthermore, by (2.9),

$$
\begin{aligned}
& \sum_{j=1}^{n}\left|e_{j n}\right|\left(x-x_{j n}\right)^{2} l_{j n}^{2}(x) W^{2}(x) \\
& \quad=\rho_{n}^{2}\left(p_{n} W\right)^{2}(x) \sum_{j=1}^{n}\left|e_{j n}\right| \lambda_{j n}^{2} p_{n-1}^{2}\left(x_{j n}\right) \\
& \quad \leqslant C_{2}\left(1+\left|Q^{\prime}(x)\right|\right)^{2 \sigma} \sum_{j=1}^{n}\left|e_{j n}\right| \lambda_{j n}^{2}\left(1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)^{2 \sigma} W^{-2}\left(x_{j n}\right)
\end{aligned}
$$

(by (2.9), (4.16) and (4.6))

$$
\begin{aligned}
\leqslant & C_{3}\left(1+\left|Q^{\prime}(x)\right|\right)^{2 \sigma} \frac{a_{n}}{n} \\
& \times \sum_{j=1}^{n}\left|e_{j n}\right| \lambda_{j n}\left(1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)^{2 \sigma+1} \\
& \times\left(1+\left|x_{j n}\right|\right)\left(\log \left(2+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)\right)^{2(1+\beta)}
\end{aligned}
$$

(by Lemma 6.8)

$$
\begin{aligned}
\leqslant & C_{4}\left(1+\left|Q^{\prime}(x)\right|\right)^{2 \sigma} \frac{a_{n}}{n} B_{1} \sum_{j=1}^{n} \lambda_{j n} W^{-2}\left(x_{j n}\right) \\
& \times\left(1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)^{-\delta / 2}\left(1+\left|x_{j n}\right|\right)^{-1}
\end{aligned}
$$

(for $n \geqslant n_{1}$ and by (7.6))

$$
\begin{equation*}
\leqslant C_{5}\left(1+\left|Q^{\prime}(x)\right|\right)^{2 \sigma} \frac{a_{n}}{n} B_{1} \tag{7.10}
\end{equation*}
$$

by Lemma 6.2, and since for some $\alpha>0$ and $n \geqslant n_{1}$,

$$
\left(1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)^{\delta / 2} \geqslant C_{6}\left(1+\left|x_{j n}\right|\right)^{\alpha} \geqslant C_{7}\left(\log \left(2+x_{j n}^{2}\right)\right)^{2}
$$

by (4.3). Substituting (7.9) and (7.10) into (7.8) yields the lemma.
With the aid of Lemma 7.2, we shall prove:
Lemma 7.3. Let $W \in \mathscr{W}_{2}$ and $\sigma:=\sigma(W)$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$, and assume that A, defined by (2.13), is finite for some $\varepsilon>0$.
(a) Then for $x \in \mathbb{R}$ and $n \geqslant 1$,

$$
\begin{align*}
& \left|Y_{n}\left(W^{2}, f, x\right)-H_{n}\left(W^{2}, f, x\right)\right| W(x)\left(1+\left|Q^{\prime}(x)\right|\right)^{-\sigma} \\
& \quad \leqslant C_{1} A\left[\frac{a_{n}}{n} v_{n}(x)\right]^{1 / 2} \tag{7.11}
\end{align*}
$$

(b) Suppose that $\left\{d_{j n}\right\}_{j, n}$ satisfy for some $\delta>0$, that B of (2.18) is finite. Then for $x \in \mathbb{R}$ and $n \geqslant 1$,

$$
\begin{align*}
& \left|Y_{n}\left(W^{2}, f, x\right)-H_{n}^{*}\left(W^{2}, f,\left\{d_{l n}\right\}, x\right)\right| W(x)\left[1+\left|Q^{\prime}(x)\right|\right]^{-\sigma} \\
& \quad \leqslant C_{2}[A+B]\left[\frac{a_{n}}{n} v_{n}(x)\right]^{1 / 2} \tag{7.12}
\end{align*}
$$

(c) If f^{\prime} exists in \mathbb{R} and D, defined by (2.20), is finite, then for $x \in \mathbb{R}$ and $n \geqslant 1$,

$$
\begin{align*}
& \left|Y_{n}\left(W^{2}, f, x\right)-\hat{H}_{n}\left(W^{2}, f, x\right)\right| W(x)\left[1+\left|Q^{\prime}(x)\right|\right]^{-\sigma} \\
& \quad \leqslant C_{3}[A+D]\left[\frac{a_{n}}{n} v_{n}(x)\right]^{1 / 2} \tag{7.13}
\end{align*}
$$

The constants C_{1}, C_{2}, C_{3} are independent of n, f, x, and $\left\{d_{l n}\right\}$ but depend on ε, δ, and W.

Proof. (a) From (1.7), (1.9), and (1.14), we see that

$$
\begin{aligned}
\left|Y_{n}\left(W^{2}, f, x\right)-H_{n}\left(W^{2}, f, x\right)\right| & =\left|\sum_{j=1}^{n} f\left(x_{j n}\right) \frac{p_{n}^{\prime \prime}\left(x_{j n}\right)}{p_{n}^{\prime}\left(x_{j n}\right)}\left(x-x_{j n}\right) l_{j n}^{2}(x)\right| \\
& \leqslant C_{4} \sum_{j=1}^{n}\left|f\left(x_{j n}\right)\right|\left[1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right]\left|x-x_{j n}\right| l_{j n}^{2}(x)
\end{aligned}
$$

by (4.18). Applying Lemma 7.2 with

$$
e_{j n}:=\left|f\left(x_{j n}\right)\right|\left[1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right] \quad \forall j, n
$$

yields (7.11).
(b) Now by (1.9) and (1.12),

$$
\begin{aligned}
& \left|Y_{n}\left(W^{2}, f, x\right)-H_{n}^{*}\left(W^{2}, f,\left\{d_{l n}\right\}, x\right)\right| \\
& \quad \leqslant\left|Y_{n}\left(W^{2}, f, x\right)-H_{n}\left(W^{2}, f, x\right)\right|+\left|\sum_{j=1}^{n} d_{j n}\left(x-x_{j n}\right) l_{j n}^{2}(x)\right|
\end{aligned}
$$

Applying (a) and Lemma 7.2 with $e_{j n}:=d_{j n} \forall j, n$, yields (7.12).
(c) By applying (b) to the special case $d_{j n}=f^{\prime}\left(x_{j n}\right)$, we immediately obtain (7.13).

It remains to estimate $v_{n}(x)$ before proving the boundedness and convergence results.

Theorem 7.4. Let $W \in W_{2}$ and $\sigma:=\sigma(W)$ Let $v_{n}(x)$ be defined by (7.2). Then for $x \in \mathbb{R}$ and $n \geqslant 1$,

$$
\begin{equation*}
v_{n}(x) W^{2}(x) \leqslant C_{1}\left[1+\left|Q^{\prime}(x)\right|\right]^{\max \{2 \sigma+1,4 \sigma\}}[1+|x|]\left[\log \left(2+\left|Q^{\prime}(x)\right|\right)\right]^{C_{2}} \tag{7.14}
\end{equation*}
$$

where C_{1}, C_{2} are independent of n and x. If T is bounded, we may replace $\max \{2 \sigma+1,4 \sigma\}$ by $2 \sigma+1$.

Proof. Because of the symmetry of the zeros of p_{n}, it is not difficult to see from (7.2) that v_{n} is even. So we treat only $x \in[0, \infty)$. Set $x_{0 n}:=\infty$ and choose $k \geqslant 0$ such that

$$
x_{k+1, n} \leqslant x<x_{k n} .
$$

By (3.6) of Theorem 3.1, at least if $k \geqslant 4$,

$$
\sum_{j:\left|x_{j n}\right| \geqslant x_{k-3, n}} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left|x-x_{j n}\right|^{-2} \leqslant C_{3}\left(x_{k-2, n}-x\right)^{-1} .
$$

Of course if $k \leqslant 3$, this sum is taken as 0 . Now by Lemma 6.11,

$$
\begin{aligned}
x_{k-2, n}-x & \geqslant x_{k-2, n}-x_{k n} \\
& \geqslant C_{4} \frac{a_{n}}{n}\left[1+\left|Q^{\prime}\left(x_{k-1, n}\right)\right|\right]^{-2 \sigma}\left[\log \left(2+\left|Q^{\prime}\left(x_{k-1, n}\right)\right|\right)\right]^{-2} \\
& \geqslant C_{5} \frac{a_{n}}{n}\left[1+\left|Q^{\prime}(x)\right|\right]^{-2 \sigma}\left[\log \left(2+\left|Q^{\prime}(x)\right|\right)\right]^{-C_{6}},
\end{aligned}
$$

by two applications of Lemma 6.6. If T is bounded, we may omit the factors involving $Q^{\prime}(x)$. Next, by (3.5) of Theorem 3.1, at least if $x_{k+4, n} \geqslant 0$,

$$
\sum_{j:\left|x_{j n}\right| \leqslant x_{k+4, n}} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left|x-x_{j n}\right|^{-2} \leqslant C_{6}\left(x-x_{k+3, n}\right)^{-1} .
$$

If $x_{k+4, n}<0$, this sum is taken as 0 . Now by Lemma 6.11,

$$
\begin{aligned}
x-x_{k+3, n} & \geqslant x_{k+1, n}-x_{k+3, n} \\
& \geqslant C_{7} \frac{a_{n}}{n}\left[1+\left|Q^{\prime}\left(x_{k+2, n}\right)\right|\right]^{-2 \sigma}\left[\log \left(2+\left|Q^{\prime}\left(x_{k+2, n}\right)\right|\right)\right]^{-2} \\
& \geqslant C_{7} \frac{a_{n}}{n}\left[1+\left|Q^{\prime}(x)\right|\right]^{-2 \sigma}\left[\log \left(2+\left|Q^{\prime}(x)\right|\right)\right]^{-2},
\end{aligned}
$$

as $x>x_{k+2, n} \geqslant 0$. If T is bounded, we may omit the factors involving Q^{\prime}.

Using our bound (2.9) yields

$$
\begin{align*}
& \frac{a_{n}^{2}}{n}\left(p_{n} W\right)^{2}(x)\left\{\sum_{j:\left|x_{j n}\right| \leqslant x_{k+4, n}}+\sum_{j:\left|x_{j n}\right| \geqslant x_{k-3, n}}\right\} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left|x-x_{j n}\right|^{-2} \\
& \leqslant C_{8}\left(1+\left|Q^{\prime}(x)\right|\right)^{4 \sigma}\left[\log \left(2+\left|Q^{\prime}(x)\right|\right)\right]^{C 9} \tag{7.15}
\end{align*}
$$

for $x \in \mathbb{R}$ and $n \geqslant 1$. Either sum is omitted, if empty. If T is bounded, we may replace 4σ by 2σ. It remains to estimate

$$
\begin{align*}
\sum_{1} & :=\frac{a_{n}^{2}}{n} \sum_{j: x_{k+3, n} \leqslant\left|x_{j j}\right| \leqslant x_{k-2, n}} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left(\frac{\left(p_{n} W\right)(x)}{x \times x_{j n}}\right)^{2} \\
& \leqslant 2 \frac{a_{n}^{2}}{n} \sum_{j=\max \{k-2,1\}}^{\min \{k+3, n\}} \lambda_{j n} W^{-2}\left(x_{j n}\right)\left(\frac{\left(p_{n} W\right)(x)}{x-x_{j n}}\right)^{2} . \tag{7.16}
\end{align*}
$$

Now by Lemma 6.8 , for $\max \{k-2,1\} \leqslant j \leqslant \min \{k-3, n\}$,

$$
\begin{align*}
\lambda_{j n} W^{-2}\left(x_{j n}\right) & \leqslant C_{10} \frac{a_{n}}{n}\left[1+\left|Q^{\prime}\left(x_{j n}\right)\right|\right]\left[1+\left|x_{j n}\right|\right]\left[\log \left(2+\left|Q^{\prime}\left(x_{j n}\right)\right|\right)\right]^{2(1+\beta)} \\
& \leqslant C_{11} \frac{a_{n}}{n}\left[1+\left|Q^{\prime}(x)\right|\right][1+|x|]\left[\log \left(2+\left|Q^{\prime}(x)\right|\right)\right]^{C_{12}} \tag{7.17}
\end{align*}
$$

by Lemmas 6.6 and 6.7 at least if $x \leqslant a_{8 n}$. If $x \geqslant a_{8 n}$, we can use the fact that $Q^{\prime}(\cdot)$ is increasing in $(0, \infty)$. If, first, $x \leqslant a_{8 n}$, there exists ξ between x and $x_{j n}$ such that

$$
\begin{aligned}
\mid p_{n}(x) & W(x) /\left(x-x_{j n}\right) \mid \\
\quad= & \left|\left(p_{n} W\right)^{\prime}(\xi)\right| \\
\quad \leqslant & C_{13} \frac{n}{a_{n}}\left[\log \left(2+\left|Q^{\prime}(\xi)\right|\right)\right]^{2}\left[1+\left|Q^{\prime}(\xi)\right|\right]^{\sigma}\left\|p_{n} W\left[1+\left|Q^{\prime}\right|\right]^{-\sigma}\right\|_{L_{\infty}(\mathbb{R})}
\end{aligned}
$$

(by Theorem 5.1)

$$
\begin{equation*}
\leqslant C_{14} \frac{n}{a_{n}^{3 / 2}}\left[1+\left|Q^{\prime}(x)\right|\right]^{\sigma}\left[\log \left(2+\left|Q^{\prime}(x)\right|\right)\right]^{C_{15}} \tag{7.18}
\end{equation*}
$$

by (2.9) and a fixed number of applications of Lemma 6.6. On the other hand if $x \geqslant a_{8 n}$,

$$
\left|\left(p_{n} W\right)(x) /\left(x-x_{j n}\right)\right| \leqslant C_{16} a_{n}^{-1 / 2}\left(1+\left|Q^{\prime}(x)\right|\right)^{\sigma} /\left(a_{8 n}-a_{5 n}\right)
$$

(by (2.9) and (4.17))

$$
\leqslant C_{17} a_{n}^{-3 / 2}\left(1+\left|Q^{\prime}(x)\right|\right)^{\sigma}(\log n)^{2}
$$

by (4.13) and (4.14). Hence (7.18) remains true. Substituting (7.17) and (7.18) into (7.16) yields

$$
\sum_{1} \leqslant C_{18}\left[1+\left|Q^{\prime}(x)\right|\right]^{2 \sigma+1}[1+|x|]\left[\log \left(2+\left|Q^{\prime}(x)\right|\right)\right]^{C_{16}} .
$$

Combined with (7.15), this yields (7.14).
We can now prove:
THEOREM 7.5. Let $W \in \mathscr{W}_{2}$ and $\sigma=\sigma(W)$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and assume that A_{1} defined by (7.1) is finite. Let κ and V be given by (2.14a, b) and (2.15), respectively. Then for $n \geqslant 1$,

$$
\begin{equation*}
\left\|Y_{n}\left(W^{2}, f, \cdot\right) W^{2} V\right\|_{L_{\infty}(\mathbb{B})} \leqslant C A_{1} \tag{7.19}
\end{equation*}
$$

where $C \neq C(n, f)$.
Proof. This follows directly from Lemma 7.1 and Theorem 7.4.
Theorem 7.6. Let $W \in \mathscr{W}_{2}$ and $\sigma=\sigma(W)$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and assume that A defined by (2.13) is finite. If T is unbounded, let

$$
\begin{equation*}
\kappa_{1}>\max \left\{2 \sigma+\frac{1}{2}, 3 \sigma\right\}, \tag{7.20a}
\end{equation*}
$$

and if T is bounded, let

$$
\begin{equation*}
\kappa_{1}>2 \sigma+\frac{1}{2} \tag{7.20b}
\end{equation*}
$$

Furthermore, let

$$
\begin{equation*}
V_{1}(x):=\left[1+\left|Q^{\prime}(x)\right|\right]^{-\kappa}[1+|x|]^{-1 / 2}, \quad x \in \mathbb{R} \tag{7.21}
\end{equation*}
$$

(a) Then

$$
\begin{equation*}
\left\|\left(Y_{n}\left(W^{2}, f, \cdot\right)-H_{n}\left(W^{2}, f, \cdot\right)\right) W^{2} V_{1}\right\|_{L_{x}(\mathbb{R})} \leqslant C_{1} A\left(a_{n} / n\right)^{1 / 2} \tag{7.22}
\end{equation*}
$$

(b) Assume that B and $\left\{d_{j n}\right\}_{j, n}$ satisfy (2.18) for some $\delta>0$. Then

$$
\begin{equation*}
\left\|\left(Y_{n}\left(W^{2}, f, \cdot\right)-H_{n}^{*}\left(W^{2}, f,\left\{d_{l n}\right\}, \cdot\right)\right) W^{2} V_{1}\right\|_{L_{x}(\mathbb{R})} \leqslant C_{2}[A+B]\left(a_{n} / n\right)^{1 / 2} \tag{7.23}
\end{equation*}
$$

(c) Assume that f^{\prime} exists in \mathbb{R}, and D defined by (2.20), is finite. Then $\left\|\left(Y_{n}\left(W^{2}, f, \cdot\right)-\hat{H}_{n}\left(W^{2}, f, \cdot\right)\right) W^{2} V_{1}\right\|_{L_{x}(\mathbb{R})} \leqslant C_{3}[A+D]\left(a_{n} / n\right)^{1 / 2}$.
Here C_{1}, C_{2}, C_{3} are independent of n and f.
Proof. This follows directly from Lemma 7.3 and Theorem 7.4.

Proof of Theorem 2.3. (a) From (2.13) and (7.1),

$$
A_{1} \leqslant A
$$

Then (7.19) in Theorem 7.5 yields (2.16).
(b) From (2.14a, b), (2.15) and (7.20a, b), (7.21), we see that

$$
V \leqslant V_{1}
$$

provided κ_{1} is chosen so close to its lower bound that $\kappa_{1} \leqslant \kappa$. Then Theorem 7.6(a), (b), (c) yield respectively Theorem $2.3(\mathrm{~b})$, (c), (d).

To deduce convergence of the operators from Theorem 2.3, we prove convergence on the polynomials:

Theorem 7.7. Let $W \in \mathscr{W}_{2}$ and $\sigma=\sigma(W)$. Let κ_{1} be given by $(7.20 \mathrm{a}, \mathrm{b})$ and V_{1} by (7.21). Let $\varepsilon>0$. Then for $n \geqslant 1$ and $R_{n} \in \mathscr{P}_{2 n-1}$,

$$
\begin{align*}
& \left\|\left(H_{n}\left(W^{2}, R_{n}, \cdot\right)-R_{n}(\cdot)\right) W^{2} V_{1}\right\|_{L_{\infty}(\mathbb{R})} \\
& \quad \leqslant C\left(\frac{a_{n}}{n}\right)^{1 / 2} \sup _{t \in \mathbb{R}}\left\{\left|R_{n}^{\prime}(t)\right| W^{2}(t)\left[1+\left|Q^{\prime}(t)\right|\right]^{2 \sigma+1+\varepsilon}[1+|t|]^{2}\right\} \tag{7.25}
\end{align*}
$$

where $C \neq C\left(n, R_{n}\right)$.
Proof. Now by [28, p. 44],

$$
H_{n}\left(W^{2}, R_{n}, x\right)-R_{n}(x)=-\sum_{j=1}^{n} R_{n}^{\prime}\left(x_{j n}\right)\left(x-x_{j n}\right) l_{j n}^{2}(x)
$$

Applying Lemma 7.2 yields, for $x \in \mathbb{R}$,

$$
\begin{aligned}
(1+ & \left.\left|Q^{\prime}(x)\right|\right)^{-\sigma}\left|H_{n}\left(W^{2}, R_{n}, x\right)-R_{n}(x)\right| W(x) \\
& \leqslant C_{1}\left(\frac{a_{n}}{n} v_{n}(x)\right)^{1 / 2} \sup _{t \in \mathbb{R}}\left\{\left|R_{n}^{\prime}(t)\right| W^{2}(t)\left[1+\left|Q^{\prime}(t)\right|\right]^{2 \sigma+1+\varepsilon}[1+|t|]^{2}\right\}
\end{aligned}
$$

Then Theorem 7.4 yields the result.
Proof of Corollary 2.4. Since $V \leqslant V_{1}$ with a suitable choice of κ_{1}, Theorem 7.7 and (4.5) yield

$$
\lim _{n \rightarrow \infty}\left\|\left(H_{n}\left(W^{2}, R, \cdot\right)-R(\cdot)\right) W^{2} V\right\|_{L_{\infty}(\mathbb{R})}=0
$$

\forall polynomial R. Then for any such polynomial, Theorem 2.3(b) ensures that

$$
\lim _{n \rightarrow \infty}\left\|\left(Y_{n}\left(W^{2}, R, \cdot\right)-R(\cdot)\right) W^{2} V\right\|_{L_{\infty}(\mathbb{R})}=0
$$

In view of the fact that we can find a polynomial R such that for a given $\alpha>0$,

$$
\sup _{x \in \mathbb{R}}|f-R|(x) W^{2}(x)\left[1+\left|Q^{\prime}(x)\right|\right]^{2 \sigma+2+\varepsilon}[1+|x|]^{2}<\alpha
$$

(cf. [5, p. 180]), then by Theorem 2.3(a),

$$
\begin{aligned}
\|\left(Y_{n}(\right. & \left.\left.W^{2}, f, \cdot\right)-f(\cdot)\right) W^{2} V \|_{L_{\infty}(\mathbb{R})} \\
& =\left\|\left\{Y_{n}\left(W^{2}, f-R, \cdot\right)-(f-R)(\cdot)+Y_{n}\left(W^{2}, R, \cdot\right)-R(\cdot)\right\} W^{2} V\right\|_{L_{\infty}(\mathbb{R})} \\
\leqslant & C_{1} \sup _{x \in \mathbb{R}}|f-R|(x) W^{2}(x)\left[1+\left|Q^{\prime}(x)\right|\right]^{2 \sigma+2+\varepsilon}[1+|x|]^{2} \\
& \quad+\left\|(f-R) W^{2} V\right\|_{\left.L_{\infty(\mathbb{R}}\right)}+o(1) \\
\leqslant & C_{2} \sup _{x \in \mathbb{R}}|f-R|(x) W^{2}(x)\left[1+\left|Q^{\prime}(x)\right|\right]^{2 \sigma+2+\varepsilon}[1+|x|]^{2}+o(1) \\
\leqslant & C_{2} \alpha+o(1)
\end{aligned}
$$

since $V \leqslant 1$. Hence (2.22). The equiconvergence results of Theorem 2.3 then imply convergence of $\left\{H_{n}\right\},\left\{H_{n}^{*}\right\}$, and $\left\{\hat{H}_{n}\right\}$.

Proof of Corollary 2.5. By (1.20),

$$
\begin{aligned}
& \left|J_{n}[k ; f]-I[k ; f]\right| \\
& \quad=\left|\int_{-\infty}^{\infty}\left(Y_{n}\left(W^{2}, f, x\right)-f(x)\right) k(x) d x\right| \\
& \quad \leqslant\left\|\left(Y_{n}\left(W^{2}, f, \cdot\right)-f(\cdot)\right) W^{2} V\right\|_{L_{\infty}(\mathbb{R})} \int_{-\infty}^{\infty}|k(x)| W^{-2}(x) V^{-1}(x) d x
\end{aligned}
$$

Now apply Corollary 2.4. The remaining results are similar.

Acknowledgment

I acknowledge several useful discussions with Professor Pinchas Rabinowitz of the Weimann Institute during our collaboration on the L_{1}-version of this paper. Professor Rabinowitz also suggested several stylistic improvements to an earlier version of this paper.

Note added in proof. The bound (2.11) has been proved for a class of weights including $\exp \left(-|x|^{\alpha}\right), \alpha>1$. This is contained in "Christoffel Functions, Orthogonal Polynomials, and Nevai's Conjecture for Freud Weights," by A. L. Levin and the author, to appear in Constructive Approximation.

References

1. W. C. Bauldry, Estimates of asymmetric Freud polynomials on the real line J. Approx. Theory 63 (1990), 225-237.
2. S. S. Bonan and D. S. Clark, Estimates of the Hermite and the Freud polynomials, J. Approx. Theory 63 (1990), 210-224.
3. J. Clunie and T. Kövari, On integral functions having prescribed asymptotic growth, II, Canad. J. Math. 20 (1968), 7-20.
4. P. J. Davis and P. Rabinowitz, "Methods of Numerical Integration," 2nd ed., Academic Press, New York, 1984.
5. Z. Ditzian and V. Totik, "Moduli of Smoothness," Springer Series in Computational Mathematics, Vol. 9, Springer-Verlag, Berlin, 1987.
6. G. Freud, "Orthogonal Polynomials," Pergamon Press/Akademiai Kiado, Oxford/ Budapest, 1970.
7. G. Freud, On the theory of one-sided weighted L^{1}-approximation by polynomials, in "Proceedings of Symposium on Approximation Theory and Functional Analysis" (P. L. Butzer et al., Eds.), pp. 285-303, Birkhäuser, Basel, 1974.
8. G. Freud, On Markov-Bernstein type inequalities and their applications, J. Approx. Theory 19 (1977), 22-37.
9. G. GRÜnwald, On the theory of interpolation, Acta Math. 75 (1942), 219-245.
10. H. B. KNoop, Hermite-Fejér interpolation on the roots of Hermite polynomials, in "Kekscemet Conference, Hungary, 1990."
11. A. KNOPFMACHER AND D. S. Lubinsky, Mean convergence of Lagrange interpolation for Freud's weights with application to product integration rules, J. Comput. Appl. Math. 17 (1987), 79-103.
12. A. L. Levin and D. S. Lubinsky, L_{∞} Markov and Bernstein inequalities for Freud weights, SIAM J. Math. Anal. 21 (1990), 1065-1082.
13. G. Lopez and E. A. Rahmanov, Rational approximation, orthogonal polynomials, and equilibrium distributions, in "Orthogonal Polynomials and Their Applications" (M. Alfaro et al., Eds.), Lecture Notes in Mathematics, Vol. 1329, pp. 125-157, SpringerVerlag, Berlin, 1988.
14. D. S. Lubinsky, "Strong Asymptotics for Extremal Errors and Polynomials Associated with Erdös-Type Weights," Pitman Research Notes in Math., Vol. 202, Longmans, Harlow, 1989.
15. D. S. Lubinsky, L_{∞} Markov and Bernstein inequalities for Erdös weights, J. Approx. Theory 60 (1990), 188-230.
16. D. S. Lubinsky and T. Z. Mthembu, The supremum norm of reciprocals of Christoffel functions for Erdös weights, J. Approx. Theory 63 (1990), 255-266.
17. D. S. Lubinsky and T. Z. Mthembu, L_{p} Markov-Bernstein inequalities for Erdös weights, J. Approx. Theory 65 (1991), 301-321.
18. D. S. Lubinsky and P. Rabinowitz, Rates of convergence of Guassian quadrature for singular integrands, Math. Comp. 43 (1984), 219-242.
19. D. S. Lubinsky and P. Rabinowitz, Hermite and Hermite-Fejér interpolation and associated product integration rules on the real line: The L_{1} theory, to appear in Canad. J. Math.
20. D. S. Lubinsky and E. B. Saff, "Strong Asymptotics for Extremal Errors and Extremal Polynomials Associated with Weights on $(-\infty, \infty)$," Lecture Notes in Mathematics, Vol. 1305, Springer-Verlag, Berlin, 1988.
21. H. N. Mhaskar, Bounds for certain Freud-type orthogonal polynomials, J. Approx. Theory 63 (1990), 238-254.
22. H. N. Mhaskar and E. B. Saff, Where does the sup-norm of a weighted polynomial live? Constr. Approx. 1 (1985), 71-91.
23. H. N. Mhaskar and E. B. Saff, Where does the L_{p}-norm of a weighted polynomial live? Trans. Amer. Math. Soc. 303 (1987), 109-124, Errata 308 (1988), 431.
24. T. Z. Mthembu, Bernstein and Nikolskii inequalities for Erdös weights, J. Approx. Theory, to appear.
25. P. Nevai, "Orthogonal Polynomials," Memoirs of the American Mathematical Society, No. 213, Amer. Math. Soc., Providence, RI, 1979.
26. P. Nevai and V. Totik, Weighted polynomial inequalities, Constr. Approx. 2 (1986), 113-127.
27. P. Nevai and V. Totik, Sharp Nikolskii inequalities with exponential weights, Anal. Math. 13 (1987), 261-267.
28. P. Nevai and P. Vértesi, Mean convergence of Hermite-Fejér interpolation, J. Math. Anal. Appl. 105 (1985), 26-58.
29. E. A. Rahmanov, Strong asymptotics for orthogonal polynomials associated with exponential weights on \mathbb{R}, manuscript.
30. G. Szegö, "Orthogonal Polynomials," American Mathematical Society Colloquium Publications, Vol. 23, Amer. Math. Soc., Providence, RI, 1939; 4th ed., 1975.
