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We investigate convergence in a weighted Lao-norm of Hermite-Fejer and
Hermite interpolation and related approximation processes, when the interpolation
points are zeros of orthogonal polynomials associated with weights W 2 = e - 2Q on
the real line. For example, if H n ( W 2

, f, x) denotes the nth Hermite-Fejer
interpolation polynomial for W 2 = e- 2Q and the function f, then we show that

lim {sup IHn(W
2,f, x)- f(x)l W 2(x)[1 + IQ'(x)IJ-K(l + Ixl)-l} =0,

n-·CQ XE~

under suitable conditions on f, W 2
, and K. The weights to which the results

are applicable include W2(x)=exp(-lxl"), tX>l, or W 2 (x) = exp(-exPk(lxl")).
ex> 1, k ~ 1, where eXPk denotes the kth iterated exponential. Convergence of
product integration rules induced by the various approximation processes is then
deduced. Essentially the conclusion of the paper is that by damping the error in
approximation of f by Hermite-Fej6r or Hermite interpolation by a factor
[l+IQ'(xJl]-K(l+lxl)-" which decays much more slowly than the weight W 2

,

we can ensure sup-norm convergence under quite general conditions. © 1992

Academic Press, In(.;.

1. INTRODUCTION

Let W:= e- Q
, where Q: IR ~ IR is even, continuous, and of at least poly­

nomial growth at infinity. Let g;, denote the set of real polynomials of
degree ~n. Form the nth orthonormal polynomial for W 2

,

n = 1, 2, 3, ..., satisfying

(1.1 )

f'" Pn(x) Pm(x) W 2(x) dx = ~mn"
~OO
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(1.2)
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-OO<Xnn<Xn-1,n< ... <X1n<OO.
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(13 )

We omit the W 2 from xjn or Pn(x) (and so on) unless confusion can arise.
In this paper, we study the convergence in a weighted Lao norm of

Hermite-Fejer and Hermite interpolation, and other approximation
processes, when {xjn }'j ~ 1 are chosen as the interpolation points. Recall that
if f: IR -? IR, then the nth Hermite-Fe)er interpolation polynomial is
H n ( W 2

, 1, .) E ~n _ 1 satisfying

H n{W 2
, 1, xjn ) = f(xjn )

H~( W 2
, 1, xjn ) = 0,

1~ j ~ n. The type of result we show is

lim {sup IHn(W
2,f, x)- f(x)1 W 2(x)[1 + IQ'(x)IJ-K(1 + Ixl)-l} =0,

n--f>OO XE~

(1.5)

under suitable conditions on 1, W 2
, and K, including a bound on the

orthonormal polynomials. Here the damping factor [1+IQ'(x)IJ-K

(1 + Ixl) 1 decays very slowly relative to the weight W 2
•

The corresponding convergence question was treated in an L1-setting in
an earlier paper [19]. A brief survey of the topic was given there, so is
omitted here.

To introduce the Hermite interpolation operator, and related approxi­
mation processes, we need more notation. Let ljn E~ _ 1, 1~ j ~ n, be the
fundamental polynomials of Lagrange interpolation, satisfying

1~j,k~n. (1.6)

The fundamental polynomials of Hermite interpolation are then

and

h ( ) .- {1 P~(Xjn) ( )} [2( )jn X.- --'(-.-) x-xjn jn X,
Pn xJn

1~j~n, (1.7)

~ 2
hjn(x):= (X-Xjn ) [jn(X)'

H n ( W 2, 1, X) admits the representation

1~j~n. (1.8)

H n(W 2
, 1, x) = I: f(xjn ) hjn(x).

j=l

( 1.9)
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If !'(xjn ) exists, 1~j~n, then the Hermite (or osculatory) interpolation
polynomial is

n n

it( W 2
, f, x) := L f(xjn ) hjn(x) + L !'(xjn ) hjn(x). (1.10)

j~1 j~1

It is characterized by the interpolatory conditions

H
A

(k)( W 2 f, ) - f(k)( )n "xjn - xjn , k = 0, 1; 1~ j ~ n, (1.11)

and by the condition Hn ( W 2
, f, . ) E ~n - 1·

Both H n and Hn are special cases of the operator

n n

Hn*(W2,f, {din}, X) := L f(xjn ) hjn(x) + L djnhjn(x), (1.12)
j~1 j=1

satisfying

Hn*( W 2
, f, {din}, Xjn ) = f(xjn )

H;'(W2,f, {din}, Xjn )= djn ,
(1.13)

1~j~n.
In several classical cases [28] and in those treated in this paper, the

contribution to hjn(x) from {p;(xjn )/P~(Xjn)(x - xjn )} 1J,,(x), is negligible. It
is then natural to introduce, as did Grunwald [9], the very simple positive
operator

n

Yn(W 2
, f, x) := L f(xjn ) 1J,,(x).

j=1
(1.14 )

Each of the approximation processes above generates a product
quadrature rule, involving approximation of

I[k; f] := flO k(x) f(x) dx.
-00

(1.15)

Here the kernel k is typically the "difficult" component of the integrand kf,
with known types of singularity or oscillatory behaviour. The component
f typically has "smooth" behaviour. The idea of the product quadrature
rule is to approximate I[k;/] by

In[k;f]:= foo k(x)Hn(W2,f,x)dx (1.16)
-00

= jtl f(xjn ) (f~oo k(x) hjn(x) dX)' (1.17)
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Analogous rules are generated by fIn, H n*, and Sn: We use the notation

and

in[k;f] := f>J k(x) Hn(W2
, f, x) dx;

- 00

In*[k;f]:= foo k(x)H:i(W2,f, {din},x)dx;
- 00

In[k;f] := f00 k(x) Yn( W 2
, f, x) dx.

- 00

(1.18 )

(1.20)

For a discussion of these rules, see [4,19]. Under mild conditions on f
and k, we shall prove, for example, that

lim In[k;f] =I[k;f]. (1.21 )

The paper is organized as follows: In Section 2, we introduce our class
of weights, and state the main results. In Section 3, we estimate certain
quadrature sums, using Markov-Posse-Stieltjes inequalities. That section
can be read independently, and is possibly of independent interest. In
Section 4, we present some technical estimates, mostly proved elsewhere.
In Section 5, we establish some Markov-Bernstein inequalities, and in
Section 6, we obtain Christoffel function estimates and deduce spacing
results for {xjn }. Finally, in Section 7, we prove the results of Section 2.

We close this section by introducing additional notation. Throughout, C,
C1> C2, ... , denote positive constants independent of n, x, and P E fJJ". The
same symbol does not necessarily denote the same constant in different
occurrences. We write C = C( W) to denote (for example) dependence on W
and C =F C(n, x) to emphasise that C is independent of nand x.

We use '" in the following sense: If {en };;')= 1 and {dn}:'~ 1 are sequences,
then

means that

Similar notation is used for functions and sequences of functions. For
real x, <x) denotes the greatest integer :( x. Let !f' c IR:. A function
f: !f' ~ (0, 00) is said to have increasing tendency if

x, Y E!f' and x :( y implies f( x) :( Cf( y).
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Finally, some further notation involving orthogonal polynomials: Let
W=e- Q as above. The nth Christoffel function is [25]

An ( W 2, x):= inf ICQ

(PW)2(t) dt/p2(x) (1.22)
Pe9n-l -co

= 1r~~ p;(W
2
;x). (1.23)

The Christoffel numbers are

1~j~n, (1.24 )

appearing in the Gauss quadrature formula

ICQ

P(x) W 2(x) dx = ±AjnP(Xjn ),
-CQ j=l

If we set

then ljn admits the representation [25]

ljn(x) = AjnPnPn -1 (Xjn )Pn(X )/(X - Xjn ),

2. MAIN RESULTS

n~ 1,

1~j~n.

(1.25 )

(1.26)

(1.27)

In our recent paper on convergence of Hermite-Fejer interpolation in
the L 1-setting, we treated weights W 2 = e- 2Q

, where Q is of polynomial, or
of faster than polynomial growth at infinity. These are called respectively
the Freud and Erdos cases. Here we also handle simultaneously Freud and
Erdos weights, but have to assume slightly different hypotheses in the two
cases:

DEFINITION 2.1. We write W E~ if

(a) W = e - Q, where Q: IR --+ IR is even, continuously differentiable,
Q" exists in (0, a)), and

(b) For XE (0, a)),

Q'(x»O

Q(O) = 0.

and Q"(X)~O.

(2.1 )

(2.2)
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(c) For XE(O, 00), let

T(x) := (xQ'(x))'jQ'(x) = 1+xQ"(X)jQ'(X).
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(2.3 )

Assume that for some '1 > 0,

T(x):;:, 1+ '1,

Assume further that either

(i) T is bounded in (0, 00),

or

X E (0, ex)).

(ii) T is unbounded and increasing in (0, 00), satisfying there

T(x) ~ C[log(2 + Q'(X))Y (2.5)

The above conditions are slightly more restrictive than those in [19].
While (i) guarantees that Q is of polynomial growth at infinity, (ii) forces
Q to be of faster than polynomial growth at infinity. In the latter case, (2.5)
is a rather weak regularity condition: Under very general conditions on Q,
it is satisfied for "most" x.

As examples of Q for which W = e - Q E ~, we mention

Q(x) := Ixl fJ , fJ> 1 (2.6)

(this satisfies (i)) and

Q(x) :=exPk(lxlfJ)-exPk(O), /3> 1, k:;:, 1, (2.7)

where exp k : = exp(exp(... exp( ) ... )) denotes the k th iterated exponential
(this satisfies (ii)).

We also need to assume a bound on the orthonormal polynomials, and
to this end, must define the Mhaskar-Rahmanov-Sajj number au = aJQ),
u > o. This is the positive root of the equation

u>o. (2.8)

Since sQ'(s) is positive and increasing for s E (0, 00), with limits 0 and ex)

at 0 and ex) respectively, au is uniquely defined. Moreover, au is increasing
for U E (0, 00), with limits 0 and ex) at 0 and Cf) respectively. The
significance of au is explored in [20, 22, 23].

DEFINITION 2.2. Let W: = e - Q E ~. We write WE "if; , if there exists
(J := a( W) > 0, such that for n:;:' 1,

(2.9)
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We remark that a = a( W) > 0 exists, when, for example, Q is given by
(2.6) with P> 1, or by (2.7). This follows from asymptotics given for
Pn(W2

; x) in [14,29]. For these Q, and for all those Q for which
W = e - Q E 11/; and for which orthogonal polynomial asymptotics were
given in [14], one can choose any

(2.10)

where 11 is as in (2.4). This follows from the bounds in [14] and Nikolskii
inequalities in [24,27], and from the bound (4.5) below.

For the case where Q, is given by (2.6), with p a positive even integer,
Bonan and Clark [2] showed that

n~ 1. (2.11 )

This bound implies that in this case we can choose

a~ ~P/(P-1) ( ~~). (2.12 )

Results of Bauldry [1] imply (2.11), and so allow (2.12), for more general
weights.

While the assumption (2.9) does not yield the sharpest possible results,
it allows tractable and close to sharp results, for all the weights for which
orthogonal polynomial asymptotics were given in [14].

Following is our main theorem, establishing boundedness in weighted
sup-norms, of {Hn }, {it}, {Yn }, and {Hn*}:

THEOREM 2.3. Let WE "If; and a = a( W). Let f : ~ ---+ ~ satisfy, for some
8>0,

A := sup If(x)1 W 2(x)[1 + IQ'(x)1 ]20"+2+B(1 + Ixl)2 < 00. (2.13)
XE~

If T is bounded, let

K > 2a + 1,

and if T is unbounded, let

K > max{2a + 1, 4a }.

Furthermore, let

V(x):= [1 + IQ'(x)l]-k(l + Ixl)-l, XE~.

(2.14a)

(2.14b)

(2.15)
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(a) Then for n> 1,

II Yn(W2
, j, .) W 2 VII Loo(lR)::;; CIA,

where C I =1= C I (n, f).

(b) Further for n> 1,
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(2.16)

(2.17)

where C2 =1= C2(n, f).

(c) Suppose that {djn L. n satisfy, for some <5 > 0,

B:= sup Idjnl W2(xjn )[1 + IQ'(xjn )l]2o-+l+8(1 + iXjnl)2< 00. (2.18)
n;;,1

I~j~n

Then for n> 1,

(2.19)

where C3 =1= C3(n, f, {din}).

(d) Suppose that f' exists in IR, and for some <5 > 0,

D := sup 1f'(x)1 W 2(x)[1 + IQ'(x)1 ]2,7+ I + 8(1 + Ixl)2 < 00. (2.20)
XE~

Then for n> 1,

(2.21 )

Remarks. (i) The message of (b)-(d) is that the operators H n , H;,
and it are "equiconvergent" with the very simple positive operators

n

Y n(W2,j,x):= I. f(xjn)l;n(x), n>1.
j~ 1

(ii) We note that the damping factor V decays extremely slowly in
comparison to W 2

• It is undoubtedly not the weakest possible damping
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factor for W = e -Q, where Q is given by (2.6) and (2.7), but for the general
class "If; (and given the present knowledge about orthogonal polynomials
for weights on IR) is all that can be achieved. The value of K and the powers
of (1 + IQ'I) and (1 + Ix I) can be improved for some of the statements
above-see Theorems 7.5 and 7.6.

(iii) Even when T is unbounded, mild additional conditions allow us
to assume (2.14a) rather than (2.14b). In particular, all the Erdos weights
treated in [14] allow this choice, as the correct lower bounds are available
for the Christoffel functions.

(iv) For the Freud case, IQ'I is of polynomial growth, so V(x),
defined by (2.15), can be replaced by (1 + Ixl)-O: for suitable 0:>0.
However, this is not possible for the Erdos case. In both cases we could
replace V(x) by (1 + IQ'(x)l)-P, but again as IQ'I can grow so much faster
than any power of lxi, this would weaken the statements.

(v) We remark that the bound

has been established for the weight W 2(x) = exp( - x 2m
), m a positive

integer [2]. Assuming such a bound, or more generally,

allows us to prove analogous of Theorem 2.3, with V replaced by factors
involving Un- See [13, 14,21] for related bounds.

The boundedness of the operators above, and density of the polynomials
in suitably weighted spaces, yields:

COROLLARY 2.4. In addition to the hypotheses of Theorem 2.3, suppose
that f is continuous.

(a) Then

lim II (Yn ( W 2
, j, . ) - f( . )) W 2 V11 Loo(R) = 0, (2.22)

n --> 00

and

lim II(Hn(W2,j,·)-f(·))W2 VIILdR)=0. (2.23)
n --> 00

(b) Assuming (2.18), we have

lim II (H:( W 2
, j, {din}, . ) - f( .)) W 2 VII Loo(R) = 0, (2.24)

n --> 00
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and assuming f' exists in IR and satisfies (2.20), we have
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lim II (Hn( W l
, f, .) - f( . )) W l VII Lw(R) = O. (2.25)

n~ 00

For the special case of the Hermite weight, Wl(x) = exp( _Xl), (2.23)
contains a substantial improvement of the results announced by Knoop
[10] that H n( W l

, f, .) -+ f uniformly on compact subsets of IR, when f is
of at most polynomial growth at infinity. To the best of my knowledge,
Hermite-Fejer interpolation for weights on IR has only been considered
previously for the Hermite weight.

For the product integration rules In' t, In*, and 1,,, defined by
(1.16)-(1.20), we can prove:

COROLLARY 2.5. Assume the hypotheses of Corollary 2.4 on f and W 2
.

Let k: IR -+ IR be measurable, and assume that

foo Ik(x)1 W-l(x) V- 1(x) dx < 00,
-00

where V is given by (2.15).

(a) Then

(2.26)

lim I n[k; f] = I[k;f] := foo k(x) f(x) dx, (2.27)
n_oo -x

and

lim In[k;f] =I[k;f]'

(b) Assuming (2.18), we have

lim In*[k;f] = I[k ;f],

and assuming f' exists in IR and satisfies (2.20), we 'have

lim t[k;f] = I[k;f]'

3. QUADRATURE SUM ESTIMATES

In this section, we estimate quadrature sums of the form

L Ajn W-l(xjn ) Ix - xjnl-P,

j E [I'

(2.28 )

(2.29)

(2.30)

for suitable !f and p > 0, The main result-Theorem 3.1-is of independent
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interest, so is proved in greater generality than the rest of this paper. The
Markov-Posse-Stieltjes inequalities applied in a suitable form, enable us to
estimate the above sums.

THEOREM 3.1. Let W:= e- Q, where Q: ~ --+ ~ is continuous, even, and
differentiable in (0, CfJ). Assume further that

(a) sQ'(s) is positive and increasing in (0, 00).

(b) There exists B> 1 such that

BsQ'(Bs) - sQ'(s) ,?-1, s '?-1. (3.1 )

Let p be a positive even integer, let n,?- 1, and x E~. Let x jn = x jn( W 2),
Ajn=Ajn(W2), 1~j~n, and choose

such that

Then

l,mE{1,2, ..., <nI2)},

Ixi >Xln'

Ixi < X m + l.n"

(3.2)

(3.3 )

(3.4)

and

L AjnW-2(Xjn) Ix-xjnl-P~CI(lxl-Xln)-P+\ (3.5)
j: IXjnl ~ Xf+ I,n

L AjnW-2(Xjn) Ix-xjnl-P~CI(Xm+l.n-lxl)-P+I, (3.6)
j: IXjnl ;;;-: X mn

where C l -=1= Cl(n, x, m, I) but C l = C l ( W, p). If we cannot choose I or m
satisfying (3.2) to (3.4) then the corresponding statement is omitted.

Remarks. (a) Q(x):= IxI P, f3 > 0, satisfies the above hypotheses, as
does Q(x) := eXPk(lxl "), f3 > 0, k'?- 1.

(b) For arbitrary p > 0, we can estimate the sum in (3.5), see
Lemmas 3.3 and 3.4.

(c) The estimation is possible largely because of the existence of an
even entire function G,...., W- 2 constructed by Clunie and K6vari [3]. For
finer results of this type, see [14, Chap. 6].

LEMMA 3.2. Let W be as in Theorem 3.1. There exists an even entire
function

00

" 2'G(x):= L., g 2j X",
j=O

j,?- 0, (3.7)
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such that for some Cl' C2 > 0,
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XE IR. (3.8)

Proof In order to conform with the notation of [3 J, we define, for
r>O,

¢J(r) := exp(2Q(r1
/
2
));

ljJ(r) := r¢/(r)l¢J(r) = r1
/
2Q'(r 1

/
2

).

Then ljJ is a positive increasing function in (0, 00) and ¢J admits the
representation

Furthermore, by (3.1), for r~ 1,

ljJ(B2r) -ljJ(r) = Br 1
/
2 Q'(Br 1

/2 ) - r1
/
2 Q'(r 1

/
2

) ~ 1.

By Theorem 4 of [3, pp. 19-20J, there exists an entire

00

f(z):= L g2j Z
j

,

j~O

such that

max If(z)1 = f(r) ~ ¢J(r), r ~ 1.
[z[ ~ r

Setting G(x):= f(x 2
), and increasing go (if necessary) so as to make it

positive, we obtain (3.8). I
The proof of Theorem 3.1 will be broken down into several steps.

LEMMA 3.3. Let W be as in Theorem 3.1. Let p > 0, let n ~ 2 be a
positive even integer, and let x E IR. Choose I satisfying (3.2) and (3.3). Then

L
1

:= L Ajn W- 2 (xjn ) ix - xjnl-P

j: jXjnl ~ Xl + I,n

(3.9)

where C 1 i= C 1(n, x, I, p). The sum is taken as empty if the choice (3.2), (3.3)
is not possible.

640/70/3-3
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Proof Let k := n/2 and

U1(t) := WZ(t1/Z)/t1/Z, tE (0, C()),

and 0 otherwise. It is well known (cf. [6, p. 50; 11, p. 91]) that

Pn( W z; t 1/Z ) = Pk( U1; t);

X;n = Xjn( WZ)Z = Xjk( U1),

2Ajn = 2Ajn( W Z)= Ajk(Ud,

1~j~k,

1~j~k.
(3.10)

Then using the symmetry properties of the zeros and Christoffel numbers
for the weight W Z

, and using Lemma 3.2,

II = I Ajn W-Z(xjn)[l Ixl- xjnl-P+ I Ixi + xjnl-P]
j : 0 < Xjn:::;;; Xl + I,n

~ C1 I Ajn G(xjn )21 Ixl- xjnl-P
j : 0 < Xjn ~ Xl + 1, n

j : 0 < Xjn :s:;; Xl + 1, n

(as 2P(I+Xjn/lxl)-P~I)

= Czlxl-P
j: 0 < Xjn ~ x/+ t,n

where

(3.11)

00

H(s):=G(Sl /Z)= I gzjsj,
j=O

and

S E (0, C()), (3.12)

SE[O,XZ
). (3.13)

Note that both Hand f have non-negative Maclaurin series coefficients,
and hence that Hf is absolutely monotone in [0, X Z ); that is,

(Hf)(j)(s) ~O, SE [0, XZ), j~ O.

Reexpressing (3.11) with the aid of (3.10) yields
k

II ~ C3 Ixl-P I Ajk(Ud H(Xjk(U1))f(xjk(Ud).
j~I+1

We can now apply the classical Markov-Posse-Stieltjes inequality for the
weight U1 to deduce that
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(See [6, pp. 32-33] for the Markov~Posse-Stieltjes inequality. However a
clearer formulation appears in [18, p. 222, Lemma 3.2J, but take account
that there the zeros are ordered in increasing order.) Then

by (3.10) and by Lemma 3.2, which shows that

H(S2) W 2(s) = G(s) W 2(s) '" 1 in IR.

Finally,

Ixl-P f(s2) = Ixl-P(I- (s/lxl)2)-p

~lxl-P(I-s/lxl)-P=(lxl-s)-p. I

Next, we deal with n odd. This is a little more difficult.

LEMMA 3.4. Let W be as in Theorem 3.1. Let p > 0, let n be an odd
positive integer, and let x E IR. Choose I satisfying (3.2) and (3.3). Then (3.9)
is valid for some C1 #- C1(n, x, I, p). The sum is taken as empty if the choice
(3.2), (3.3) is not possible.

Proof Let k := (n -1)/2 and

U2(t):= t1/2W2(t1/2), tE (0, CX)),

and 0 otherwise. It is known (cf. [6, p. 50J, [11, pp.89-90J)that

Pn( W 2; t1/2)/t1/2= Pk( U2; t);

Then

X]n = xjW 2)2 = Xjk( U2),

2Ajn X]n = 2}'jn( W 2) xjn ( W 2)2 = Ajk ( U2),

1~j~k,

1~j~k.
(3.14 )

+
j: 0 < Xjn ~ Xl+ l,n

+ C2 Ixl-P
j : 0 < Xjn ~ Xl + 1, n
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exactly as at (3.11), where Hand f are defined by (3.12) and (3.13). Note
that we have used Xk+l.n=O. Now let

00

H1(t) :=(H(t)-H(O))jt= L g Zj t j -l,
j=l

Then we have

t E (0, (0).

+ Cz Ixl-P L AjnX]nHl (x]n) f(x]n)
j: 0 < Xjn ~ Xl+ t,n

+ Czlxl-PH(O) L Ajnf(x]n)
j: 0 < Xjn ~ x/+ I,n

say. First, the classical Markov-Stieltjes inequality for WZ yields

Lll=\x\-PAk+l,nW-Z(O)

~ Ixl-P U:k:z,n WZ(t) dt) W-
2
(0)

= 2 Ixl-P U:kn WZ(t) dt) W- 2(0)

I
Xkn

~2Ixl-P a dt

(since Q(t)~Q(O) in (0, (0))

I
Xkn IXln

~2 (lxl-t)-Pdt~2 (Ixl-t)-Pdt.
a a

Next, we handle the main term L1,2: Using (3.14),

L1,2 = C2 Ixl-P L AjnX;nHl(X]n) f(x]n)
j: 0 < Xjn::S:;;; x/+ I,n

(3.15)

(3.16)
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(by the Markov-Posse-Stieltjes inequality for U2 )
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(3.17)

exactly as in the previous lemma. Finally, we estimate L1,3' First, note that
for xjn E [0, Ixl),

f(x]n) = (1 - (xjn/lxl ?)-P ~ (1- xjn/lxl )-P = g(xjn ),

where

tE (- 00, Ix/).

Here g is absolutely monotone in (- 00, Ixl), as is easily verified by
successive differentiation. Then the Markov-Posse-Stieltjes inequality for
W 2 [18, p.222, Lemma 3.2(i), (ii)] yields

LI,3 = C2 Ixl-PH(O) L )ojnf(x]n)
j: 0 < Xjn::S;; Xl+l,n

~ C2 Ixl-PH(0) L Ajn g(xjn )
j : 0 < Xjn.:s;;; Xl+ 1,n

= C2 /xl-
P
H(0) C~~+l-j~~+JAjn g(xjn )

~ C2Ixl-PH(0) [f:I~ - J:k~l,nJ get) W 2(t) dt

= C2Ixl-PH(0) J:ln get) W2(t) dt

~ C2 H(0) W 2(0) fin (Ixl- t)-P dt,

as Wis decreasing in [0, (0). Together with (3.15) to (3.17), this yields the
result. I
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Next, we handle the somewhat more problematic terms in (3.6). Here the
summand can no longer be absolutely/completely monotone in the relevant
range.

LEMMA 3.5. Let W be as in Theorem 3.1. Let nand p be positive even
integers and let x E IR. Choose m satisfying (3.2) and (3.4). Then

L2 := L Ajn W- 2(xjn ) Ix - xjnl-P
j: IXjnl ~ X mn

~C2rXJ (t-lxl)-Pdt,
Xm+l,n

(3.18)

(3.19)

where C2 =I C2(n, x, m, p). The sum is taken as empty if the choice (3.2),
(3.4) is not possible.

Proof Let U I be as in Lemma 3.3 and let G be as in Lemma 3.2. Then

L2 := L Ajn W- 2(xjn )[l Ixl- xjnl-P+ I Ixi + xjnl-P]
j: Xjn ~ Xmn

j: Xjn~ X mn

~ 2P+ IcI L AjnG(Xjn)(X;n) -p/2(1 - (lxl/xjn )2)-p
j: Xjn ~ Xmn

(as 2P(1 + Ixl/xjn)-P?: 1)

=2P + I CI L AjnG(xjn)fl(x;n)'
j: -"jn ~Xmn

where

fl(t) := t-P/2(1- x 2/t)-P = j~O I( ~P)I x2jt-j-p/2,

It is crucially important here that all these series coefficients be non­
negative and that j + p/2 be an integer for j?: O. Then we can write

co

(3.20)
i= -00

where Pi?: 0 for all i. Then

L2~2P+ICIJ= f3i(. L AjnX;~)
1 - - 00 J . x}n ~ X mn

co

=: 2P +
1C 1 L PiXi,

i= -00

(3.21 )
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say. Of course, the interchanges are justified by non-negativeness of the
series terms. Now we can use (3.10) to write

m

Xi= L AjnX]~=! L: )Ojk(VI)Xjk(VI)i. (3.22)
j : Xjn;3 Xmn j = 1

Suppose first i:;::' O. Then the function t --+ t i is absolutely monotone in
[0, 00) in the sense that all its derivatives are non-negative. By
Markov-Posse~Stieltjes inequality for VI [18, p.222, Lemma 3.2J, [6,
p. 92, Lemma 1.5]

(3.23 )

Next, suppose i < 0. Then the function t --+ t i is completely monotone in
(0, 00) in the sense that

tEO (0, 00), j:;::' 0.

Then the Markov-Posse-Stieltjes inequality for VI [18, p. 223, Lemma 3.3J
yields

Substituting (3.23), which we have shown valid for all i = 0, ±1, ±2, ...,
into (3.21) yields

= 2P + Icdoo

G(S)fl(S2) W 2(s) ds
x m+l,n(W2)
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by Lemma 3.2. Finally,

fl (S2) = s-P(1 - (lxl/s)2) -p:::;; s-P(1 -Ixl/s) -P = (s -Ixl) -Po I

Finally, we deal with the sum (3.6) for n odd.

LEMMA 3.6. Let W be as in Theorem 3.1. Let n be an odd positive
integer, p be an even positive integer, and let x E IR. Choose m satisfying (3.2)
and (3.4). Then (3.18) holds, where C2 -=1= C 2(n, x, m, p). The sum is taken as
empty if the choice (3.2), (3.4) is not possible.

Proof Let U2 be as in Lemma 3.4. Let fl be as at (3.19). Exactly as in
the previous lemma, we obtain (3.21). So we must estimate Xi' i = 0,
± 1, ± 2, .... Using (3.14), we see that

m

Xi= L Ajnxj~=! L Ajk(U2 )Xjk(U2 )i-l.
j : Xjn ;;>- X mn j = 1

Proceeding exactly as in the previous lemma, we see that for all i,

Xi:::;; ! f') t i - 1U2(t) dt
X m +l,n(U2)

We can then proceed as before to obtain (3.18). I
Proof of Theorem 3.1. For n even, (3.5) follows from Lemma 3.3 and for

n odd, from Lemma 3.4. For n even, (3.6) follows from Lemma 3.5, and
for n odd, from Lemma 3.6. I

4. TECHNICAL ESTIMATES

In this section, we list some technical estimates, mostly proved in other
papers.

LEMMA 4.1. Let WE"#';. and 17 := 17( W) be as in (2.4).

(a) Forx>0,L~1,

(4.1 )
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(b) 3C> °such that

Q(au)~ Cu, UE (0,00).

(c) 3Cu C2, C 3 such that

Q'(x)?: ClX~, x?:C3 ·

Q(x)?: C2Xl +~, x?: C3 .

(d)

au ~ C
4

Ul/(l +~), u?: Cs.
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(4.2)

(4.3 )

(4.5)

(e) There exist C6 , C7 , Cg such that for v?:u?:Cg,

(1 + C
6
/u)(V/U)l/(l +~)?: avla

u
?: (v/U)C7/(IOg Q·(u"))2. (4.6)

Proof (a) to (d) are Lemma 3.1 in [19]; (e) is Lemma 3.2 in [19J.
Note that ~ is contained in the class 1fI of [19]. I

We recall, for the reader's convenience, that "increasing tendency" was
defined at the end of Section 1.

LEMMA 4.2. Let W E~ and 11 := 11( W) be as in (2.4).

(a) For u?: C l ,

u ~ auQ'(aJ ~ C2 uT(aJ l
/
2 ~ C3 u log u.

(b) Foru?:C4 ,

(c) T has increasing tendency in (0, 00).

(d)

(4.7)

(4.8)

max T(x) ~ C6(log U)2,
Ixl ";au

(e)

Cg/(uT(aJ)~a~/au~ 1/(u(1 +11)),

(f)

UE (0,00).

(4.9)

(4.10)

?: 1+ C9(log r)/T(arJ

?: 1+ ClO/(log U)2,

u E (0, 00), r E (1, <Xi). Here C9 ,6 C9(r, u) but C lO = ClO(r).

(4.11 )

(4.12)

(4.13 )
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(g)
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U E (0, OC), r E (I, oc). (4.14 )

Proof (a) For the inequality auQ'(a,J?: u, see, for example, Lemma
3.3(b) in [19]. Next, when T is bounded, Lemma 3.I(c) in [12, p. 1071]
shows (under less restrictive hypotheses) that

and hence as T is bounded above and below,

auQ'(au)"'" uT(aJ 1
/
2

•

When T is unbounded, Lemma 2.2(c) in [IS, p. 200] shows that

(4.15)

(Note that in [15], X= T and we choose j = I). Thus (4. I5) holds whether
T is bounded or unbounded. Finally, (2.5) yields the rightmost inequality
in (4.7).

(b) This follows from the leftmost inequality in (4.7) and from (4.5).

(c) If T is unbounded, then we assumed it is increasing, and so
trivially has increasing tendency. If T is bounded, then T ~ I in (0, (0),
so the increasing tendency is again trivial.

(d) By (c), and by (2.5) and (4.7),

max T(x) ~ CT(aJ ~ C 1(1og U)2.
Ixl ~ au

(e) Differentiating (2.8) with respect to u yields

Since

t E (0, I], u> 0,

the definition (2.8) of au yields

I ~ C (::) uT(aJ;

I?: (::) u(1 + '7).

H(,nce (4.10).
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arulau=exp(rU a;/atdt)

;;:, exp ( Cgru

(tT(a,))-l dt)

;;:,exp ( CllT(arJ- 1 (U t-1dt)

= exp(Cll T(arJ-1log r).

(by (4.10))

Then (4.12) also follows and (4.9) yields (4.13).

(g) This is similar to (f): Use the upper bound in (4.10) rather than
the lower bound. I

LEMMA 4.3. Let WE 11/;. There exists n 1 such that

(ii) (4.

(iii) Forn;;:,1and1:::;;j:::;;n,

(4.18 )

Proof For (i), (ii), see Corollary 4.4 in [19]. For (iii), we use (5.5) in
Lemma 5.1 in [19] and Lemma 5.3 in [19J to deduce (with the notation
there) that

IP~(Xjn)/p~(xjn)1 = 12Q'(xjn )+ A~(xjn)/An(xin)1

:::;; C[1 + IQ'(xjn )\]. I

5. MARKOV-BERNSTEIN INEQUALITIES

In this section, we present some Lex; Markov-Bernstein inequalities.
Recent work on this topic appears in [12, 17,24,26]. For fairly general
Freud weights, it is known [12] that

IIP'WII L",(IR) + II(PW)'IILw(IR):::;;C; IIPWIIL",(iR)'
n

PE~. (5.1)
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For fairly general Erdos weights W, it is known [15] that

n
II P' W!I/"df~) + II (PWn LdR) ~ C;- T(an)1/2 II PWI L,,(Rl'

n

PE9". (5.2)

The unbounded factor T(an ) cannot be replaced by a more slowly growing
factor [14].

Since we can only deal with nlan in the context of the paper, we prove
inequalities in which T(a n )1/2 is replaced by a function of x, independent of
n. The main result of this section is:

THEOREM 5.1. Let W:= e- Q E "If/; , Let fI E iR. Then for n ~ I and PE 9",

11[I P' WI + I(PW)'I] [I + IQ'I ]/i[log(2 + IQ'I)] 21 i I,x,([~)

~C; 'IPW[I+IQ'IFII Lx (:-<j'

n

(5.3 )

Here C # C(n, P). If T is hounded, then the factor (log(2 + IQ'I)) 2 may be
omitted.

We remark that when T is unbounded, stricter regularity assumptions on
Q allow us to replace (log(2+ IQ'I))-2 by the "correct" factor T- 1

/
2

• Our
first step in proving Theorem 5.1 is an infinite--finite range inequality.

LEMMA 5.2. Let W:= e Q E "If/;. Let 0 < p < ce, IX ~ 0 and fI, L1 E JR.
Then :JC # (n, P) such that for n ~ 1 and P E ,'?I",

IIPW[1 + IQ'I]/i[log(2+ IQ'I)]AI/,p([-<)

~ (l + Cn-') IIPW[1 + IQ'I ]/i[log(2 + IQ'I)]AII LprCl4n,a4n]'

Furthermore, for n ~ 1 and P E ,'?I",

I'PW[1 + IQ'I]/i[log(2+ IQ'I)].1II/,p(tl;;>a4n)

~Cn-' IIPWII Lp( a4n, a..1,

(5.4 )

(5.5)

Proof Under somewhat weaker conditions on Q than those for "If/;, it
was shown in [19, Proof of Theorem 4.3] that if If' ~ 0,

Applying this with the special case fI' = 0 to the right hand-side yields
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Since for any ,1,13 E IR, 313' ~ 0 such that
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we then obtain (5.5) at least for n ~ n2. The remaining finitely many n can
be treated by a compactness argument. To deduce (5.4) from (5.5), we note
that

IIPWII Lp [ ~a4n,a4n] ~ IIPW[l + 1Q'I Jfl [1og(2 + IQ'] )],111 L p [ ~a4n.a4n]

X [1 + Q'(a4n )JIf31 [log(2 + Q'(a4n))JI,11

~ Cn~/2 IIPW[l + IQ'I]f3 [log(2 + IQ'I )],111 L
p

[ ~a4n,a4n]'

if a12> IfJl, and we have used (4.7) to bound Q'(a4n ). Substituting this last
inequality into (5.5) yields

IIPW[l + IQ'I]fi[log(2+ IQ'I)]'11ILp (ltl;:.a4n)

~ Cln-~/2 IIPW[l + IQ'I ]fi[log(2 + IQ'I n" Ii L
p

[ -a4n. a4n]·

Since a may be replaced by 2a and a4n # a4n(a), we obtain (5.4). I
We use [12] for Freud weights, and [15J for Erdos weights, in proving

Theorem 5.1. First, Freud weights:

LEMMA 5.3. Let WE "fIIr and assume that T is bounded. Then 3C such
that for n? 1 and P E ~,

111P'WI+I(PW)'IIILoo(~)~C; IIPWIILoo(~)' (5.6)
n

Proof By Theorem 1.1 in [12, p. 1066]

IIP'WIILoo(~)~(t" dSIQ[~l](S)) IIPWIILoo(U<)' (5.7)

n? 1, PEr!}". Here Q[-l] denotes the inverse function of Q. Also by
Theorem 1.3 in [12, p. 1067] with YJ = ! there,

(5.8)

and
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n?:- 1, P E ~. It clearly suffices to show that

Now it is shown in [12, p. 1071, Eq. (3.6)] that

anxQ'(anx) ~ Q(anx) ~ n,

(5.10)

(5.11 )

uniformly for x E [a, b], any 0 < a < b < 00. Then for n?:- 1, J?:- 1, and some
C3 =F C3(J, n),

Together these imply that for some fixed integer J> 0, and with C as in
(5.9),

Then

Now for 0 < e < 1/,

d
- (Q'(t)jte)= Q'(t) t-1-e(T(t) -1- e)
dt

?:-(1/-e)Q'(t)t- 1- e>0, t>O,

so Q'(t)jte is increasing. Then

(). ~Q'(a )a-ef
aJn

t-1+edtn -....;::: In In
Q[-l](l)

~ C4 Q'(aJn )~ Csnjan,

by (5.11). Hence (5.10). I

LEMMA 5.4. Let WE "If; and assume that T is unbounded. Then 3C such
that for n?:- 1 and P E~,

n
II[IP'WI + I(PW)'I ] [log(2 + IQ'I)] -211 L oo (lR) ~ C;- IIPWII L

oo
(IR). (5.12)

n
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Proof Let us first assume that Q" is continuous in IR. For n ~ 1 and
xE[0,1J,let

l/Jn(x):=r (1-S)-1/2 anxQ'(anx) - ansQ'(ans) ds
I/an a"x - aIls

and

A: := n -I r (1- s) -1/2(ans)2Q"(ans) ds.
1/2

A result in [15, pp.194-195J states that for n~nl' PE[JJJ",

I(PW),(x)1 ~ C IIPWIILda;l) (1-1~1)-1 r l/Jn(t)(I- t)I/2 dt,
an Ix/ani

Ixl ~ an(1- (nA:)-2/3).

Furthermore,

Since [15, p.200, Eq. (2.15)J

lim an Q'(an /2)/n=O,
n~OCJ

it follows that

so (5.14) also yields

(5.13 )

(5.14 )

n
lI[IP'WI + I(PW)'IJIILoo[-an/2,an/2]~C-IIPWIILda;l)' (5.15)

an

PE[JJJ", n~nl'
We now deal with Ixl ~an/2. Now in [15, p. 208, Eq. (3.26)J, it is shown

that

l/Jn(t)(1 - t)I/2 ~ ~ f.1n(t) uniformly for tEn, 1),
an

n ~ nI' Here f.1n is a non-negative function in [ - 1, 1] with [15, p. 205]

r f.1n(t) dt = 1.
-1
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Hence for [xl E [an/2, anJ,

D. S. Ll.:BI1\;SKY

Next, by definition of T, we can write

A:=n- I fl ansQ'(ans)(l-s)-1:2(T(ans)-I)ds
1:2

";3l]n- 1 r
l

ansQ'(ans)(l-s2)-1/2 ds (by (2.4))
• 1.:2

";3 I]n/4,

by definition of an and since ansQ'(ans)( I - S2) - 1;2 is increasing in (0, I).
Hence we can rewrite (5.13) in the form

IP' WI(x) + I(PW),(x)1 ~I PWII L"«R) [IQ'(X)I +C2 :n (I -I :,,1) IJ
(5.16 )

l1";3n l , PE.'?P", an/2~lxl~an(I-C3n 213). In view of (4.13) in Lemma
4.2(f), we also have this valid for an /2 ~ Ixl ~ a,,;2' Now for such x, write
Ixl =au , where 0<u~n/2. Then by (4.7) and (4.8),

ixQ'(x)1 ~ auQ'(au)~ C 3 u(1og u)

~ C4 u[log(2 + Q'(aJ)J ~ C4 ~[log(2 + IQ'(x)l)]'

Since Ixl ";3 an /2, we obtain

n
IQ'(x)1 ~ C5 -log(2 + IQ'(x)I),

an

a,,/2 ~ Ixl ~ an/2' Also recalling our definition Ixl = au,

~ (I -~) -I (as 11 ";3 2u)
a 2u

~ C 6 (1og U)2 (by (4.13))

~ C 7 [log(2 + Q'(au ))J2 = C 7 [log(2 + Q'(X))J2,

(5.17)
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by (4.8). Together with (5.17) this enables us to write (5.16) in the form

IP'WI (x) + I(P W)'(x) I

n
~ CS IIPWII Loo("l);- {[log(2 + IQ'(x)I)] + [log(2 + IQ'(x)1 )J2},

n

n ~ n l , P E fJ}Jn, an/2 ~ Ixl ~ an/2' Combined with (5.15), this yields

II[IP'WI + I(PW)'I][log(2+ IQ'I)]-21I Loo [-anI2,anI2]

n
~ Cg IIPWII Loo("l);-'

n

n ~ n l , P E gl'n. Replacing n by 8n,

(5.18 )

n ~ nu P E fll'". Now by (5.5) of Lemma 5.2,

11[Ip'WI + I(PW)'I][log(2+ IQ'j)]- 2 1ILoo (lt!;>a4n)

~ 11[2IP'WI + IQ'IIPWI][log(2+ IQ'1)]- 2 1ILoo (ltl;>a4n)

~ CIon -2 liP' WII Loo [ -a4n,a4n] + CiOn -2 IIPWII Loo [ -a4n. a4n]

(by (5.18))

n
~ Cll n -2 -;; [log(2 + Q'(a4n))]2 IIPWII Loo("l) + CIOn -2 IIPWII L oo [ -a4n,a4n]

n

~ C12IIPWIILoo("l)'

in view of (4.7). Together with (5.18), this establishes (5.12) for n~nl' The
remaining finitely many n can be treated by a compactness argument.
Finally we note that we used the continuity of Q" only in applying
Lemma 3.2 in [15, p, 208]. Furthermore, (5.12) does not involve Q". When
Q" is not continuous at 0, a straightforward argument yields (5.12) in the
general case [15, pp.221-222]. I

Next, we approximate the factor [1 + IQ'I ]P[log(2 + IQ'I)]'1 on
[-aa.n' acr:nJ=

LEMMA 5.5. Let W:= e -Q E "#1. Let 13, Ll E IR and Ci > O. There exist
polynomials R n of degree at most o(n), n ~ 00, such that for n ~ 1, we have
in [ -a~n, a~nJ

(5.19)

640/70/3-4
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IR~I ~ C(log(n + 1))3[1 + IQ'I JP[log(2 + IQ'I )Jd. (5.20)

Proof We note first that we may assume Q" is continuous at 0, since
we are only looking for", in (5.19): If not, modify Q in [ -1, IJ to obtain
a twice differentiable QI there. Now in IR,

r/J:= [1 + IQ'IJ P[log(2+ IQ'I)Jd

'" [1 + Q,2 JP/2[log(2 + Q'2)Jd = exp( lj;), (5.21)

where

lj; := ~ log(1 + Q,2) + L1log log(2 + Q,2). (5.22)

Let

tE[-I,IJ,n~1. (5.23)

Then by (4.7),

Il/n II Lee [ -I, I] ~ C1 log(1 + Q'(a2an f) ~ C2log(n + 1). (5.24)

Also

I/,'()I I f3 (Q'Q")(a2ant)
n t = a2an 1+ Q'(a2an t)2

L1 2(Q"Q')(a2ant) I
+ a2an (log(2 + Q'(a2an t)2))(2 + Q'(a2ant )2)

Now for 1~ lsi ~ a2an ,

IQ"(s)/Q'(s)1 = IT(s) - II/lsi

~ II Til L ee [ _ az"",aZ,n] ~ C4(log(n + 1))2.

Then (4.14) and the continuity of Q" ensures that

III: II Loo[ -I, I] ~ Csan(log(n + 1))2, n~ 1. (5.25)

Let ({In denote the polynomial of degree <Csan(1og(n+ 1))2) of best
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uniform approximation to In on [-1, 1]. By Jackson's theorem on
approximation by polynomials,

Illn - lpnll L oo [ -I, I] :::;; C6 III: II L oo [ -I, l]/degree( lpn) :::;; C7 · (5.26)

Now by standard results on derivatives of polynomials of best approxima­
tion [5, p. 84, pp. 10--11],

max (1- t2)1/2 Ilp~(t)1 :::;; Cs max (1- t2 1/:(t)1
tE[-I,I] tE[-I,I]

Then for ItI :::;;aan/a2~n,

Ilp~(t)l:::;; C9 an(log(n+ 1))2(1-(a~n/a2~n)2)-1/2

:::;; ClOan(log(n + 1))3, (5.27)

by (4.13). Now let r k(u) denote the (k + 1)th partial sum of the Maclaurin
series of eU

, k ~ 1. It is well known that

(5.28 )

Let us note from (5.24) and (5.26) that

Illpnll L oo [ -I, I] :::;; C l4 1og(n + 1).

Then we can choose k = k(n) = O(log(n + 1n, such that if

then in view of (5.28), for UE [-a~n, a~nJ,

RAu) ~ exp(lpn(u/a2~n))

~ exp(fn(u/a2~n))= exp( ljJ(u)) ~ ¢;(u),

by (5.26) and (5.23). Furthermore, for U E [ -a~n' a~n],

IR~(u)1 = Ir~(n)(lpn(u/a2~n))lllp~(u/a2~n) a;;'~1

= Irk(n)-I(lpn(u/a2~n))lllp~(u/a2~n) a;;,; I

~ exp(lpn(u/a2~n)) Ilp~(u/a2~n) a;;,; I

:::;; CIS exp(ljJ(u)) 2 (log(n + 1))3
a20xn

:::;; C I6 t,11(u)(log(n + 1))3,

by (5.21) and (4.14). So we have (5.19) and (5.20).

(by (5.27))
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Finally, the degree of Rn is k(n)<Csan(log(n+ l)f), which is
O(an(log(n + 1))3) and hence o(n) by (4.5). I

Proof of Theorem 5.1. In view of Lemma 5.2 (cr. the proof of
Lemma 5.4), it suffices to prove that

:::::; C1 ; IIPW[1 + IQ'I ] 13
11 L ro (lR) ,

n

(5.29)

So let R n E ~, n ~ n1, be the polynomials of Lemma 5.5 with A = 0 and
1X=4. Then in [-a4n, a4n] for PE~,

[IP'WI + I(PW)'I][1 + IQ'I]13

- [IP'WI + I(PW)'I]Rn

= I(PRn), W - PR~ WI + I(PRnW)' - R~PWI

:::::; I(PRn)'WI + I(PRnW)'I + 2IR~IIPWI

:::::; C 2n IIPRnWII L
ro

(lR) [log(2 + IQ'I)]2 + 2 IR~IIPWI,
a2n

by Lemmas 5.3 and 5.4. Of course if T is bounded, Lemma 5.3 shows that
[log(2+ IQ'I)]2 can be omitted. Since PRnEf/zn [22],

IIPRnWII L",(IR) = IIPRnWII L",[ -a2n,a2n]

-IIPW[1 + IQ'I] 13 IIL ro [-a2n,a2n]'

Then using the bound for R~ from Lemma 5.5, we have in [ -a4n, a4n] for
PE~,

[IP'WI + I(PW)'I][1 + IQ'I]13

:::::; C; IIPW[1 + IQ'I ] 13
11 Ld- a2n,a2n] [log(2 + IQ'I)]2

n

+ C(log(n + 1))3 IPWI [1 + IQ'I ]13.

Since

n/an~Cl(log(n+l))3, n~l,

we have (5.29) and the theorem. I
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6. ESTIMATES FOR CHRISTOFFEL FUNCTIONS,

AND CONSEQUENCES
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In this section, we obtain upper and lower bounds for Christoffel
functions, and apply these to spacing of the zeros of the orthogonal
polynomials. The following lemma was proved in a weaker form in [19].

LEMMA 6.1. Let WE 'if"; and 11 := 11( W) be as in (2.4). Let

f3 := (1 + 11 )/(211)'

Then 3s E (0, 1), n1 ;?: 1 and C, such that if

m :=m(n) :=sn/T(an)fJ,n;?:n 1 ,

we have

for

(6.1 )

(6.2)

(6.3 )

(6.4 )

Proof We adopt the old method of Freud [8]. By Lemma 5.2, for
n;?:n j say,

Define for a fixed x the linear polynomial in t,

IjJ At) := Q(x) + (t - x) Q'(x).

If Q" exists throughout IR, we see that by convexity,

IjJ At) - Q(t) = - !Q"(~)(t - X)2:s; 0, t E IR.

As the left-hand side does not involve Q", a continuity argument
establishes this even when Q"(O) does not exist. Hence

exp(1jJAt)) W(t):s; 1,

Next, for It I :S;a4n and Ixl :S;am(n),

t E IR. (6.6)

IIjJAt)1 :s; Q(am(n)) +2 a
4n

am(n) Q'(am(n))
am(n)

:s; C1m(n) + CAn/m(n))l/(l + ~)m(n) T(am(n»)1/2
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(by (4.2), (4.6) and (4.7))

~ C3w + C
3
e- 1/(1 +~)+ IT(an)f3/(l +~) nT(an)1/2- f3

=C3n[e+e~/(1+~)], (6.7)

by the choice (6.1) of /3. Here C3 i= C3 (e, n, x, t).
Next, as in the proof of Lemma 5.5, let 1"k(U) denote the (k + 1)th partial

sum of eU
• Define

Sx,n(t) := 1" <n/2>(l/J At)).

From (5.28) and (6.7), if e is small enough,

Then by (6.6),

0< Sx,n(t) W(t) ~ C4 ,

Furthermore,

(6.8)

Sx,Ax) W(x) ",exp(l/JAx)) W(x) = 1, (6.9)

Substituting P(t) :=Sx,n(t)R(t) in (6.5), where RE&><n/2>-1 is arbitrary,
yields

An(W
2

, x) W- 2(x)

~ 2 inf f4n (RSx,n W)2(t) dt/(RSx,n W)2(X)
R E i??<nI2) - 1 - a4n

~ Cs inf f4n R 2(t) dt/R2(x),
R E i??<n/2) -I -a4n

where w is the classical Legendre weight on [ -1, 1]. By classical estimates
[30],

SE [-1, 1], l~ 1.

Hence the result. I

LEMMA 6.2. Let WE 'if!;. For n ~ 1,

n

I AjnW-2(Xjn)(2+xJn)-1/2(log(2+xJn))-2~C. (6.10)
j~ 1

Proof See [19, Lemma 6.2]. I



HERMITE AND HERMITE-FEJER INTERPOLAnON 317

LEMMA 6.3. Let WE "If/; and 1] := 1]( W) be as in (2.4). Define f3 and m(n)
as in (6.1) and (6.2). Then

(6.11)

implies

IXjn - xj+1,nl ~ C :n G+ (1- [min{ IXjn~~~Xj+1,nl}JY/2). (6.12)

Proof We use the method of Freud [7, pp. 293~294]. Choose D, E E IR
such that

exp(Dxjn + E) W 2(xjn ) = 1 = exp(Dxj+1,n + E) W 2(xj+1,n)'

By convexity of Q,

exp(Dt + E) W 2(t) = exp(Dt + E - 2Q(t)) ~ 1,

Also then by the Markov-Posse-Stieltjes inequality,

~ A.jn exp(Dxjn + E) + Aj+ 1,n exp(Dxj+ 1,n + E)

=Ajn W- 2(xjn )+ Aj+ 1,n W- 2(xj+1,n)'

Now apply the bounds of Lemma 6.1. I

LEMMA 6.4. Let WE "If/; and 1] := 1]( W) be as in (2.4). Let

L1 := (1 + 1])/1].

Let <;0 be small enough, and let

(6.14 )

n~ 1. (6.15)

Then 3n 1 such that for n~n1,Pn(X)=Pn(W2;X) has at least one zero in
In := [a/(n)/2, a/(n)).

Proof We use an argument of W. Hahn as adapted by Freud [7].
Suppose on the contrary that Pn has no zeros in In. Let
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so O~t/Jn(x)~1. By Lemma4.3(ii) and our hypothesis, all zeros lie in
[ -aSn ' aSn ]\In for n ~ nil so

Also, by the Gauss quadrature formula,

(6.16)

1 + (a l - t)( t - al/2)/(4a;n) ~ 1 + (al- a3t14 )(a21/3- al/2)/(4a;n)

~ 1+ CI(al/2/asnfT(an)-2

(by (4.12) and as n~l(n), n~nd

(by (4.6) and the definition of 1= l(n». Next, using the inequality

T (n/2) _ 1(1 + 5) ~ !(l + (25)1/2) (n/2) -1, 5~ 0,

~ exp( C 3 n51/2),

we obtain for t E K m and by the choice of LI,

t/Jn(t) ~ exp(C486/(1 +~)nT(an)-Ll).

Furthermore for t E Kn , (4.2) yields

w(t) ~ exp( - Q(a31/4» ~ exp( - Cst)

=exp( -Cs80nT(an)-Ll).

Then for t E Kn ,

t/Jn(t) W 2(t) ~ exp(nT(an) -Ll {C486/(1 +~) - 2Cs80})

~ exp( C6 n(log n)-2Ll),

where C6 = C6 (80), if 80 is small enough. Then as the length of Kn is

a31/4 - a21/3~ C7a31/4 T(a 31/4)-1

~ Cs(log n)-2,

n~nl' (6.17) contradicts (6.16). I

(by (4.12»
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From Lemmas 6.3 and 6.4, we deduce
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THEOREM 6.5. Let WE~ and l:=l(n), n~l, be defined by (6.14) to
(6.15). Then 3n l and CI>O such that for n~nu each interval of length
~Clan/n in [-a[(n), a[(n)] contains at least one zero of Pn-

We now estimate (IQ'(x)1 + l)/(IQ'(xin )1 + 1) in [xi +l,n' xin ]:

LEMMA 6.6. Let W E ~. There exist n I and C such that uniformly for
1~ j ~ nand n ~ n 1,

where we set X On :=aSn and xn+l,n:= -asn, and L1 is given by (6.14).

Proof Let l=l(n) be given by (6.15), n~1. Let lin:=[xi+1,n,xi-1,nl
If first linc [-2,2], then (6.18) follows directly. Suppose next
lin C [ -ai' -1] u [1, all Then

!
log -l ~'(X)22+ 1 JI = If 2Q:(t)P'(t) dtl

Q (xin ) + 1 Xjn Q (t) + 1

~2(xi-l.n-xi+l,n) max IQ"(t)/Q'(t)!
IE [Xj+l,n,Xj-l,nJ

an
~Cl- max I(T(t)-l)/tl

n tE [Xj+l,n,Xj-l,nJ

by (4.9) and (4.5). Here we have also used Theorem 6.5 to bound
xi-l,n - xi+l,n for n ~nl' Together with our considerations about [ -2,
this yields (6.18) for n ~ nl whenever lin C [ -ai' all

Next, we note that for n ~ nu lin cannot contain the interval [a[/2' atJ or
[ -ai' -a[/2], si:lce

a[-a[/2 ~ C4 a[T(a[)-1 (by (4.12))

~ Cs(log n) -2 ~ 5C1 an/n,

by (4.9) and (4.5), where C 1 is as in Theorem 6.5: So [a[/2' at] certainly
contains more than 5 zeros of Pn for n large enough. Thus if lin is not
contained in [-a[, atJ, then for n ~nl> either

or
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Suppose the former. Then since X1n ~ aSn and XOn= asn,

IQ'(xjn)1 ~ Q'(aSn )~ C6 n(log n)/an,

by (4.7). Further, for xEljn , (4.7) shows that

IQ'(x)1 ~ Q'(a//2 ) ~ (l/2)/a//2

so

IQ'(xjn)1 + 1 n a//2 n
IQ'(x)1 + 1 ~ C7 / (log n)~~ C7 / (log n)

~CsT(an)L1(logn) (by (6.15))

~C9(logn)I+2LI,

by (4.9). Furthermore, in view of (4.8),

log Q'(x) ~ log Q'(a//2 ) ~ CIO log l~ Cll log n.

So

IQ'(xjn)1 + 1 ::< C (log (2 + Q'(X)))1 +2LI
IQ'(x)1 + 1 "" 12 .

If we reverse the roles of xjn and x, we obtain the same bound for the
reciprocal of the last left hand side. Similarly if ljn c (- 00, -a//2 l I

By very similar, but easier means, we can prove

LEMMA 6.7. Let WE"If/;. There exist nl and C such that uniformly for
1~j~n and n~nl'

(6.19 )

Here XOn := aSn and x n+ l,n := -aSn-

We remark that at least when T is bounded, the powers of
log(2 + IQ'(x)l) can be removed from (6.18) and (6.19). In fact, even when
T is unbounded, only slightly stronger regularity assumptions still allow us
to remove these powers. Next, we bound the Christoffel numbers.

LEMMA 6.8. Let WE "If/; and f3 be given by (6.1), Then for n ~ 1 and some
C>O,

max Ajn W- 2(xjn )[1 + IQ'(xjn)IJ -1[1 + Ixjnl] -1[log(2 + IQ'(xjn)l)] -2(1 +P)
l-S;;J~n

(6.20)
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Proof From Lemma 6.1, with m=m(n) there

implies
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:( C2 :n [1 + IQ'(xjn )][1 + IX;nl ] [log(2 + IQ'(x;n)l)]2(1+/J).

(6.21 )

Next, if Ixjnl ~ am, then

IQ'(xjn)1 ~ Q'(am)~ m/am

~ cnT(aJ~fJ/an

~ C1n/(an(log n)2fJ ),

by (4.9). Then

(by (4.7))

(by (6.2))

(6.22)

log(2 + IQ'(xjn)l) ~ C210g n,

n~nl' and by (4.3),

log(2 + IQ'(xjJI) ~ C3 1og(2 + x;n)'

Then for such j, Lemma 6.2, and then (6.22), yield

)'jn W~2(Xjn):( C4(2 + x;n)1/2(log(2 + x;n))2

Together with (6.21), we have proved (6.20). I
Next, we derive rather weak lower bounds for }'n:

LEMMA 6.9. Let WE 1f/;. and (J := (J( W). Then

n
sup ),; l( W 2

, x) W 2(x)[1 + IQ'(x)IJ ~2<T[log(2+ IQ'(x)l)] ~2:( C1-.
x EO U< an

(6.23 )
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Proof From the relation

we obtain

sup A;!(W2, x) W2(x)[1 + IQ'(X)l]-2oDog(2+ IQ'(x)I)]-2
XEUli

!

~Pn I IIp'n_k W[1+IQ'I]-°[log(2+IQ'I)]-21ILoo (Uli)
k~O

x II Pn-! +k W[l + IQ'I] -°Il Loo(Uli)

! n
~a5n I C2 -IIPn_k W[1 + IQ'I]-OIILoo(Uli)

k~O an

x IIPn-1+k W[l + IQ'I]-OIILoo(Uli)

(by (4.16) and Theorem 5.1)

by (2.9) and (4.6). I
We remark that results in [14,16] imply better bounds for A;! for

Erdos weights. For Freud weights, without any additional conditions, we
prove the following lemma. The method will be used elsewhere for other
purposes.

LEMMA 6.10. Let WE 11/; and assume that T is bounded. Then

(6.24)

Proof The bound (6.24) is a straightforward consequence of the
Markov-Bernstein inequalities in [12], as stated in (5.6) above. For any
P E &:. _!, choose ~ E IR such that

I(PW)(OI = IIPWIILoo(Uli)·

Let 0 < e < 1. Now if Iy - ~I ~ wn/n, there exists z between ~ and y such
that

I(PW)(y)1 = I(PW)(~) + (PW)'(z)(y - ~)I

~ I(PW)(~)I-I(PW),(z)1 wn/n

~ IIPWII Loo(Uli) [1- Ce],
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where C is as in (5.6) and C i= C(n, P). Choosing 8 = Ij(2C) yields

Then for x E IR,

fCO (PW)2(y) dy/(PW?(x)
- co

f
~ + ean/n

;?: II PWII L(~)j4 dt/(PW?(x)
c; - Ean/n

;?: w n /(2n).

Thus
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for all XE R I

We now deduce lower bounds for the spacing of the zeros:

LEMMA 6.11. Let WE,#,; and (J :=(J(W). Then uniformly for
2~j~n-l, n;?:n l ,

a
Xj-l,n - Xj+l,n;?: C nn [1 + IQ'(xjn )!] -20"[log(2 + !Q'(xjn )!)] -2. (6.25)

If T is bounded, we have uniformly for 2 ~ j ~ n - 1, n;?: n1 ,

an
XJ'-l n-xJ+l n;?: C-., , n (6.26)

Proof We use the Markov-Posse-Stieltjes inequality in the form given
in [11, p.89, Lemma 3.2]. Suppose first xj + l,n > 0 and G is the entire
function of Lemma 3.2 above. Setting X On := 00, we have by [11, p. 89],

AjnG(xjn )= ~ [. L AknG(Xkn) - , ~ , AknG(Xkn)J
k , IXknl < Xj-l,n k . IXknl < X)n

~~ [f:~j~~,n-f::j~~J G(t) W
2
(t) dt

= r-l,n G(t) W 2(t) dt.
Xj+ t,n

By Lemma 3.2 above, we obtain
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Then (6.25) and (6.26) follow respectively from the bounds of Lemma 6.9
and 6.10. By symmetry, the same inequality holds if xj_l,n < O.

Finally, suppose x j + I,n ::::; 0 and x j _ I,n?: O. Then in view of Theorem 6.5,
for n ?: nI' both are contained in [ -1, 1]. By the classical Markov-Stieltjes
inequality,

Applying Lemmas 6.9 and 6.10 again, and the fact that W- 2 is bounded in
[ -1, 1], we obtain (6.25) and (6.26) for all 2::::;j::::; n - 1. I

7. PROOFS OF THE THEOREMS

In this section, we prove slight improvements of Theorem 2.3 and its
corollaries.

LEMMA 7,1. Let WE if; and a := a( W). Let f: IR ~ IR satisfy

Al := sup If(x)1 W 2 (x)(1 + IQ'(x)1 )20-+ I +"(1 + Ixl) < 00, (7.1)
XEIR

(7.2)

(7.3 )

n ?: 1, X E IR. Then for x E IR and n ?: 1,

IYn( W 2
, f, x)1 ::::; CAl vn(x),

where C#C(n,f,x) but C=C(W,e).

Proof First note that from the representation (1.27), and from (2.9),
(4.16), and (4.6), for XE IR, n?: 1, and 1 ::::;j::::;n,

Then

n

IYn( W 2
, f, x)1 ::::; L If(xjn)llj~(x)

j~ I

::::; Cian jtl A}n W-
2
(xjn ) If(xjn)1 [1 + IQ'(xjn)l] 20- (:~(:~nr·

(7.5)
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Now by Lemma 6.8 and (7.1),

Ajn If(xjn )I [1 + IQ'(xjn)1 JZ<1

~ Cz an If(xjn)1 WZ(xjn)[1 + IQ'(xjn)1 ]Zo-+ 1
n

X [1 + Ixjn l][log(2+ IQ'(xjn )l)]Z(I+l3l
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E:ubstituting into (7.5) yields (7.3). I
Next, we estimate a term that enables us to compare H n , it, and H n*

to Yn :

LEMMA 7.2. Let WE "If; and a := a( W). Let {ejn L,n satisfy

B1 := sup lejnl W Z(xjn )(1 + IQ'(xjn )l)Z<1+1+0(l + Ixjnlf< 00, (7.6)
l$;.j~n

n~ 1

some b > O. Then for x E IR and n): 1,

n

(1 + IQ'(x)I)-<1 L lejnllx-xjnllj~(x) W(x)
j~ 1

(7.7)

where C#C(n, {ejn},x) but C=C(W,b) and where vn(x) is defined
(7.2).

Proof By the Cauchy-Schwarz inequality,

n

L: lejnllx-xjnllj~(x)
j~l

~Ct lejnl (X-Xjnflj~(X)Y/Z Ctl IejnI1j,,(X)Y
/Z

.

If we define fn: IR -+ IR by

(7.8 )

1~j~n and n): 1,

and fn(x) = 0 otherwise, then the exact argument of the previous lemma
shows that
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n

L lejnllfn(x)=.Yn(W2,fn>X)
j~l

D. S. LUBINSKY

::::;C1{ SUp lejnl W2(Xjn)(I+IQ'(Xjn)l)2<T+l+b(I+IXjnl)}vn(x)
l~j~n

n;.>-:l

(7.9)

where C 1 "# C1(n, {ejn }, x). Furthermore, by (2.9),
n

L lejnl (x - xjn )21;n(x) W 2(X)
j~l

n

= P~(Pn W)2(X) L lejnl A;'P~_l(Xjn)
j=l

n

::::; C2(1 + IQ'(X)j)2<1 L lejnl A]n(1 + IQ'(Xjn)I?<1W-2(Xjn)
j~l

(by (2.9), (4.16) and (4.6))

::::; C 3(1 + IQ'(x)1 )2<1 an
n

n

X L /ejnl Ajn (1 + IQ'(xjn )/ )2<1+ 1

j~ 1

X (1 + Ixjn l)(log(2+ IQ'(xjn )I))2(l+P)

(by Lemma 6.8)

::::;C4(1 + IQ'(x)I)2<1
an

B1 ±AjnW-2(Xjn)
n j~ 1

X (1 + IQ'(xjn )l)-O/2(1 + Ixjnl)-l

(for n?n 1 and by (7.6))

::::; Cs(l + IQ'(x)1 )2<1 an B 1 ,
n

(7.10)

by Lemma 6.2, and since for some a> 0 and n? n1 ,

(1 + IQ'(xjn)1 )"I2 ? C6 (1 + Ixjnl t? C7(log(2 + X]nW,

by (4.3). Substituting (7.9) and (7.10) into (7.8) yields the lemma. I
With the aid of Lemma 7.2, we shall prove:

LEMMA 7.3. Let WE "If; and a := a( W). Let f: IR ~ IR, and assume that
A, defined by (2.13), is finite for some B > O.
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(a) ThenforxE[I;£andn~l,

IYn(WZ,f, x)-Hn(WZ,f, x)1 W(x)(l + IQ'(x)I)-o-
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(7.11 )

(7.12)

(b) Suppose that {djnL,n satisfy for some b>O, that B of (2.18) is
finite. Then for x E [1;£ and n ~ 1,

IYn(Wz,f, x)-H;(WZ,f, {din}, x)1 W(x)[l + IQ'(x)J]-o-

~ Cz[A + B] [~ Vn(X) J/Z.

(c) If f' exists in [1;£ and D, defined by (2.20), is finite, then for x E IR
and n ~ 1,

(7.13)

The constants C1, CZ, C3 are independent of n, f, x, and {din} but depend on
e, b, and W.

Proof (a) From (1.7), (1.9), and (1.14), we see that

IYn(W 2
, f, x) - Hn(W2,f, x)1 = I±f(xjn ) P7((X

jn
)) (x - xjn ) l]n(x) I

j~l Pn xJn
n

~ C4 L If(xjn )I [1 + IQ'(xjn)I] Ix - xjnll]n(x),
j~l

by (4.18). Applying Lemma 7.2 with

ejn := If(xjn )I [1 + IQ'(xjn)1 ] Vj, n

yields (7.11).

(b) Now by (1.9) and (1.12),

IYn(W2,f,x)-H;(W2,f, {dln},x)1

~ IYn(W2
, f, x) - Hn(WZ, f, x)1 + Ijtl djn(x- xjn ) l]n(X)/.

Applying (a) and Lemma 7.2 with ejn := djn Vj, n, yields (7.12).

(c) By applying (b) to the special case djn=f'(xjn ), we immediately
obtain (7.13). I

640/70/3-5
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It remains to estimate vn(x) before proving the boundedness and
convergence results.

THEOREM 7.4. Let WE W2 and a := a( W). Let vn(x) be defined by (7.2).
Then for x E IR and n ~ 1,

vAx) W 2(x) ~ C1[1 + IQ'(x)IJrnax{2/T + 1,4/T} [1 + Ixl] [log(2 + IQ'(x)1 )]CZ,

(7.14 )

where C1 , C2 are independent of nand x. If T is bounded, we may replace
max{2a + 1, 4a} by 2a + 1.

Proof Because of the symmetry of the zeros of Pn' it is not difficult to
see from (7.2) that V n is even. So we treat only x E [0, CXJ). Set X On := 00 and
choose k ~ 0 such that

By (3.6) of Theorem 3.1, at least if k ~ 4,

L AjnW-2(Xjn) Ix- xjn l- 2~ C3(Xk-2,n - X)-l.
j: IXjnl ?:Xk-3,n

Of course if k ~ 3, this sum is taken as O. Now by Lemma 6.11,

a
~ Cs~ [1 + IQ'(x)l] -2/T[log(2 + IQ'(x)I)] -C6,

n

by two applications of Lemma 6.6. If T is bounded, we may omit the
factors involving Q'(x). Next, by (3.5) of Theorem 3.1, at least if xk+4,n ~ 0,

L Ajn W- 2(xjn ) Ix - xjn l- 2~ C6(x -Xk+3,n)-I.
j: IXjnl ~ Xk+4,n

If Xk+4,n < 0, this sum is taken as 0. Now by Lemma 6.11,

x - x k+3,n ~ x k+I,n - x k+3,n

~ C7 an [1 + IQ'(x)IJ -2/T[log(2 + IQ'(x)l)] -2,
n

as X> Xk + 2,n ~ O. If T is bounded, we may omit the factors involving Q'.



HERMITE AND HERMITE-FEJER INTERPOLAnON

Using our bound (2.9) yields
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for x E IR and n;;:' 1. Either sum is omitted, if empty. If T is bounded, we
may replace 40- by 20-. It remains to estimate

" '= a~ '\' 1. W- 2( .) (Pn W)(x))2
L.l . ~ /Lin X Jlln. XXX

) .Xk+3,n::::; IXjnl :S;;Xk-2,n ]n

:< a~ min{k+3,n} -2 (Pn W)(X))2
",,2 L AjnW (xj,,) .

n j=max{k-2,1) X-Xjn

Now by Lemma 6.8, for max{k- 2,1} ~j~min{k - 3, n},

(7.

a
~ C ll ....!!. [1 + IQ'(x)I][l + Ixl][log(2+ IQ'(x)l)y12, (7.17)

n

by Lemmas 6.6 and 6.7 at least if x~asl1' If x;;:'asn , we can use the fact
that Q'(-) is increasing in (0, CX)). If, first, x ~ aSn ' there exists ¢ between x
and x jn such that

IPn(x) W(x)/(x-xjn)1

= I(Pn Wnol

(by Theorem 5.1 )

n
~ C 14 372 [1 + IQ'(x)1 Y[log(2 + IQ'(x)1 )]e'5,

an
(7.18)

by (2.9) and a fixed number of applications of Lemma 6.6. On the other
hand if x;;:' asn ,

I(Pn W)(x )/(x - xjn)1 ~ C16a; 1/2(1 + IQ'(x)1 )""j(aSn - a sn )

(by (2.9) and (4.17))
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by (4.13) and (4.14). Hence (7.18) remains true. Substituting (7.17) and
(7.18) into (7.16) yields

Combined with (7.15), this yields (7.14). I
We can now prove:

THEOREM 7.5. Let WE "If!; and a = a( W). Let f: IR ----t IR and assume that
A 1 defined by (7.1) is finite. Let I( and V be given by (2.14a, b) and (2.15),
respectively. Then for n ~ 1,

(7.19)

where C of- C(n, f).

Proof This follows directly from Lemma 7.1 and Theorem 7.4. I

THEOREM 7.6. Let WE "If!; and a = a( W). Let f: IR ----t IR and assume that
A defined by (2.13) is finite. If T is unbounded, let

1(1) max{2a + 4, 3a}, (7.20a)

and if T is bounded, let

(7.20b)

Furthermore, let

(7.21 )XERV1(X):= [1 + IQ'(x)I]-KI[1 + Ixl]-1/2,

(a) Then

II(Yn(W2,J, ·)-Hn(W2,J, .)) W2V11ILco(Uil)~C1A(an/n)1/2. (7.22)

(b) Assume that Band {djnL,n satisfy (2.18) for some 6>0. Then

II( Y n( W 2, J, . ) - H n*( W 2, J, {din}, . )) W 2V111 Lco(Uil) ~ C2 [A + B](an/n)1/2.

(7.23 )

(c) Assume that f' exists in IR, and D defined by (2.20), is finite. Then

II (Yn( W2, J, .) -It( W 2, J,.)) W2 V1 11 Lco(Uil) ~ C 3 [A + D](an/n)1/2. (7.24)

Here C 1 , C2, C3 are independent ofn andf

Proof This follows directly from Lemma 7.3 and Theorem 7.4. I
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Proof of Theorem 2.3. (a) From (2.13) and (7.1),

Then (7.19) in Theorem 7.5 yields (2.16).

(b) From (2.14a, b), (2.15) and (7.20a, b), (7.21), we see that
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provided K 1 is chosen so close to its lower bound that K 1 ~ K. Then
Theorem 7.6(a), (b), (c) yield respectively Theorem 2.3(b), (c), (d). I

To deduce convergence of the operators from Theorem 2.3, we prove
convergence on the polynomials:

THEOREM 7.7. Let WE 1f2 and 0' = 0'( W). Let Kl be given by (7.20a, b)
and VI by (7.21). Let e > O. Then for n ~ 1 and R n E fJ}Zn-l,

where C =1= C(n, R n ).

Proof Now by [28, p. 44],

n

Hn(WZ
, Rn, x) - Rn(x) = - L R~(xjn)(x - xjn ) lj~(x).

j= i

Applying Lemma 7.2 yields, for x E IR,

Then Theorem 7.4 yields the result. I
Proof of Corollary 2.4. Since V ~ Vi with a suitable choice of K i'

Theorem 7.7 and (4.5) yield

lim II (Hn ( WZ
, R, . ) - R( .)) WZVII Loo(~) = 0,

n~ 00
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V polynomial R. Then for any such polynomial, Theorem 2.3(b) ensures
that

lim II( Yn ( W2
, R, .) - R(·)) W2 VII Loo(lR) = o.

n~ 00

In view of the fact that we can find a polynomial R such that for a given
oc > 0,

sup If - RI (x) W 2(x)[1 + IQ'(x)1 ]20-+2+'[1 + Ixl]2 < oc
XEI<I

(cf. [5, p. 180]), then by Theorem 2.3(a),

II (Yn ( W 2
, f, . ) - f( . )) W 2 VII Loo(l<I)

= II { Yn ( W2, f - R, . ) - U - R)( . ) + Yn( W2, R, . ) - R( . )} W2VII Loo(l<I)

:s:; C 1 sup If-RI (x) W2(x)[1 + IQ'(x)I]2o-+2+E[1 + Ixl]2
XE~

+ IIU-R) W 2 VIIL oo(I<I)+0(1)

:S:;C2 sup If-RI (x) W 2(x)[I+IQ'(x)I]2u+2+E[I+lxl]2+ 0 (1)
XEI<I

since V:S:; 1. Hence (2.22). The equiconvergence results of Theorem 2.3 then
imply convergence of {Hn }, {H,i}, and {it}· I

Proof of Corollary 2.5. By (1.20),

IJn[k;!] -I[k;!]1

=If~oo (Yn(W
2
,f,X)-f(X))k(X) dx l

:s:; II(Yn(W
2,f, .)- f(·)) W2V11 Ldl<l)foo Ik(x)1 W- 2(x) V-1(x)dx.

-00

Now apply Corollary 2.4. The remaining results are similar. I
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Note added in proof The bound (2.11) has been proved for a class of weights including
exp( -Ixl "), Il( > 1. This is contained in "Christoffel Functions, Orthogonal Polynomials, and
Nevai's Conjecture for Freud Weights," by A. L. Levin and the author, to appear in Constructive
Approximation.
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